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1 Introduction

The US electricity sector is undergoing a transformation, driven by technological develop-

ments such as innovation in natural gas production and wind power, and greater use of

energy efficiency. The transformation has dramatically reduced US consumption and pro-

duction of coal—both relative to expectations in the mid-2000s and in absolute terms. Coal

production declined 19 percent from 2015 to 2016 and by 38 percent since its peak in 2008

((Energy Information Administration, 2017a), Table 6.1). Between 2008 and 2015, coal-

mining employment declined by 23 percent (Mine Safety and Health Administration, 2016)

and 31 percent of coal mines closed (The National Institute for Occupational Safety and

Health, 2016), mostly in the eastern United States.

The result of the 2016 presidential election led to some federal policies and proposals

that aim to reverse the downward trend of coal production and employment. One of those

policies is a reversal of an Obama administration order to review the federal coal leasing

program. In early 2016, the Obama administration placed a moratorium on new coal leases

on federal lands, beginning a review of leasing policy that might have ultimately raised

costs of producing coal from federal lands (Department of Interior, 2016). However, the

plight of coal miners and coal-mining communities across the United States generated much

discussion during the 2016 presidential election. The closure of a coal mine is a highly salient

event with potential knock-on effects to local economies. Although coal mining accounts for

a small share of total US employment, mining significantly contributes to local economies

in many areas, such as West Virginia (Black et al., 2005). Like other resource dependent

regions, Appalachia has exhibited depressed long run income growth, consistent with the

so-called resource curse or drag (Douglas and Walker, 2016; Jacobsen and Parker, 2016).

The potential efficacy of coal policies is an open question. A number of recent studies

(e.g., Department of Energy (2017), Linn and Muehlenbachs (2018), Cullen and Mansur

(2017), Fell and Kaffine (forthcoming), and Holladay and LaRiviere (2017)) have concluded

that natural gas prices and renewables substantially reduced coal consumption at US power
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plants between 2008 and 2014. Houser et al. (2017) apportion reductions in coal consumption

to electricity market and regulatory factors, while Linn and McCormack (2017) analyze

the effects of market and regulatory forces on the retirements of coal-fired power plants.

However, most of the employment losses in the coal sector have occurred among coal mines

rather than power plants. Although Brinkman et al. (2017) examine the longer-term trends

in coal mine closures, the literature has not attempted to explain the recent coal mine

closures. Standard microeconomic theory would suggest that a decline in coal demand

from the electricity sector would reduce mine profitability and cause closures, but other

factors could contribute to closures, such as increased interregional competition1, declines in

economically recoverable reserves, or regulations that raise production costs. Disentangling

the contributions of these factors to mine closure would be essential for understanding how

hypothetical policies affecting coal demand and supply, such as those considered by the

Obama and Trump administrations, would affect coal-mining closures and employment.

In this paper, using data from 2002 to 2012, we estimate the effects of changes in coal

mine profitability on mine closures and mining employment. We isolate individual demand-

and supply-side contributions to recent closures, comparing the importance of these factors

in explaining recent closures. This study period was chosen based on availability of data,

particularly confidential data from Form EIA-923. We focus on closure decisions among

Appalachian coal mines, which account for most of the observed closures during this period.

Appalachian mines are typically smaller and higher-cost mines relative to the western mines

(Gillingham et al., 2016).

A mine’s closure depends on expectations of future profits. Given the large numbers of

mines, coal shippers, and coal-fired electricity plants in the United States, it is not com-

putationally feasible to estimate and simulate a mine-level dynamic stochastic model that

allows for competitive behavior by mines and shippers. Instead, we adapt and extend meth-

ods developed in the literature, which allows us to estimate a mine’s expected profits and

1The Clean Air Act of 1990 led most coal plants to alter their boilers in a way that allows for the burning
of coal from different regions (Ellerman et al., 2000).
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approximate equilibrium outcomes under imperfect competition. We estimate the expected

discounted profits in each year from 2002 to 2012 for each Appalachian coal mine. Profits

depend on coal demand from the electricity sector, coal attributes, transportation costs, and

production costs. A mine’s profits also depend on its market power, export demand, and

potential competition from other mines. The estimation of expected profits takes advantage

of unique data on marginal costs and coal prices, and a novel identification strategy for es-

timating demand for each mine’s coal that accounts for imperfect competition among mines

and the endogeneity of coal prices and demand. We adapt Wolak (2003) to approximate

equilibrium coal shipping behavior given market power for shippers and other factors affect-

ing the equilibrium, and we use a computational model of the electricity generation sector

to construct plausibly exogenous measures of the future demand for a mine’s coal. Johnson

et al. (2017) use a computational model to predict the generation at individual coal-fired

plants in a particular period, and we build on this approach by using a more accurate com-

putational model and by estimating future coal demand, which is necessary to account for

the forward-looking nature of closure decisions (see Linn and McCormack (2017) for details

on the model).

Having estimated each mine’s expected profits, we use a duration model to estimate the

effect of profits on the decision to close the mine. We find that expected profits strongly

predict closure, such that a 10 percent decrease in profits raises the closure probability by

0.2 percentage points above the baseline closure rate, which implies a 3 percent increase in

the closure rate.

Using the estimated effects of expected profits on closure, we analyze scenarios to compare

the relative effects of demand, supply, and policy factors in explaining coal mine closures

between 2002 and 2012. Conceptually, each scenario includes a shock to a particular demand

or supply-side determinant of profitability. We compute the effect of the shock on expected

profits, and the effect of the resulting profit change on closure. For each scenario, we compare

the effect of the shock on closures with the total number of closures caused by declining
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profitability during the sample. That is, we net out a baseline closure rate that reflects factors

not included in the profitability model, such as regulation of coal mines. This adjustment

accounts for the high degree of job losses from mine closings that are typically observed in the

industry (Dunne and Merrell, 2001), independently of the factors driving mine profitability

that we include in our model.

On the demand side, given the recent findings in the literature on the effects of electricity

demand and natural gas prices on domestic coal consumption, we focus on these two factors,

which have jointly reduced coal consumption by about one-third (Linn and McCormack,

2017). Between 2006 and 2012, electricity consumption increased by an annual rate of 0.6

percent, whereas the Energy Information Administration had projected a 2 percent annual

growth rate during this period (Energy Information Administration (2015b), Table 2.2).

Between 2008 and 2012, real natural gas prices declined by 69 percent (Energy Information

Administration, 2017c). Both declining natural gas prices and slower growth in electricity

consumption reduced coal demand and mining profitability, raising closures. The reduction

in natural gas prices explains 125 (30 percent)of the mines that closed between 2002 and

2012 as a result of declining profits. The reduction in electricity consumption explains 135

(33 percent). The analysis accounts for the fact that the shocks occurred at different times

during our sample period. The fact that the electricity consumption shock occurred prior to

the natural gas price shock partly explains the larger effect of the consumption shock.

We compare the demand-side explanations of closures with a supply-side explanation.

Between 2002 and 2012, real per-ton extraction costs in Appalachia nearly doubled, and we

show that declining worker productivity rather than rising wages explains most of the cost

increase. Consequently, we define the supply-side shock to a mine as the decrease in a mine’s

productivity relative to the maximum productivity that we observe at the mine. Because

of rising extraction costs and other factors, generally we observe declining productivity over

time across mines in the data. The declining productivity caused 274 mine closures between

2002 and 2012, or 67 percent of the total closures in the sample caused by declining prof-

4



itability. The supply-side shock caused a roughly 20 percent decrease in US coal mining

employment, and the two demand-side shocks each affected employment substantially.

The conclusion that declining mine productivity explains more closures than declining

coal demand is perhaps surprising, given the focus of the literature and public debate on

demand rather than supply side factors. However, this conclusion is consistent with the

magnitudes of the shocks. During the sample period, declining productivity reduced annual

operating profits three times as much as did lower natural gas prices or electricity consump-

tion.

We note that the three counterfactuals in isolation cause closures exceeding the number

of closures observed as a result of declining profits. This is because the demand and supply

shocks affected the same mines, and many mines close in multiple counterfactuals. Nonethe-

less, the results suggest that the supply shock had a larger effect on mine closures than did

each of the demand shocks in isolation. Although explaining the falling productivity lies

outside the scope of this paper, we note that changes in permitting procedures or declining

reserves could partly explain the declining productivity.

The analytical structure allows us to estimate the effects of potential policies on closures.

As noted above, the Obama administration began a review of federal leasing policy, and some

advocates, analysts, and policymakers have discussed raising the cost of producing coal on

federal lands to reflect social costs of coal consumption, such as greenhouse gas emissions.

To the extent that western and eastern coal mines compete with one another, raising costs of

producing from federal lands increases profits at eastern mines and reduces the probability

that those mines close. However, our coal mine profitability model implies that western and

eastern coal are rather weak substitutes for one another. A hypothetical policy that raises

costs of western mines and causes the 10 highest-cost mines to close would reduce closures

by 84 mines, which is smaller than the estimated effects of the other supply and demand

scenarios on closures.2

2Western production is heavily concentrated in two large operations near Gillette, Wyoming. Other mines
in the region are one-tenth to one-hundredth as large as these two mines.
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In addition to the novel empirical strategy for estimating mine closures and considering

counterfactuals, our results contribute to the recent literature on coal mine policy. The

Obama administration’s lease moratorium motivated a number of studies on coal mine be-

havior. Gillingham et al. (2016) discuss potential options for improving the coal mine leasing

process and discuss the potential for substitution in consumption of federal and nonfederal

coal. Gerarden et al. (2016) use a dynamic simulation model to show that increasing the costs

of mining on federal lands has a small impact on nonfederal coal production. Our analytical

approach and results differ from theirs. Whereas they use a forward-looking computational

model and compare simulation results across hypothetical future policy scenarios, ours is the

first to use observed closure decisions to estimate the effects of demand- and supply-side fac-

tors on closure. For computational reasons, their model aggregates across mines and power

plants, while we perform a mine-level analysis. Their focus on hypothetical policies affecting

coal on federal lands contrasts with our focus on the potential explanations for recent coal

mine closures.

The rest of the paper is organized as follows. Section 2 discusses the coal mine and power

plant data and their trends, Section 3 explains our estimation strategy, Section 4 provides

our estimation results and counterfactual simulations, and Section 5 concludes.

2 Background

2.1 Data

The analysis uses three main data sources. The first is the Mine Safety and Health Ad-

ministration (MSHA) Part-50 database. The data include the location, production, and

employment for every US coal mine. The second is the Energy Information Administration

(EIA) Form 423/923 data on coal purchases. We utilize the complete Form EIA-423/923

data that contain fuel expenditures and quantities for both regulated and deregulated power

plants. We obtained the data for deregulated plants under a nondisclosure agreement with

6



the EIA. The data have been used in other recent papers, such as Linn et al. (2014) and

Cicala (2015). The third dataset is the Environmental Protection Agency’s (EPA) Contin-

uous Emissions Monitoring System (CEMS). For most fossil fuel-fired electricity generation

units in the United States, the data include hourly fuel consumption, generation, and emis-

sions. These primary datasets are supplemented with wage information from the Bureau of

Labor Statistics’ (BLS) Quarterly Census of Employment and Wages (QCEW) and financial

disclosure information (Form 10-K) from publicly traded firms.

2.2 Trends in Coal Consumption

Coal became the backbone of the electricity generation system in the United States follow-

ing the Organization of the Petroleum Exporting Countries (OPEC) oil embargo in 1973-4.

The federal government encouraged coal-fired power plant construction and encouraged pro-

duction of coal as a substitute for oil. Between the mid-1970s and mid-2000s, the share of

coal-fired generation in total electricity generation increased from about 44 to 50 percent

((Energy Information Administration, 2017b) Table 7.2A)). As a result, the amount of coal

consumed by the electricity sector increased from 664 million tons in 1984 to 851 million

tons in 2014 (Energy Information Administration, 1990, 2015a). Coal exports have fluctu-

ated over time; for example, 81 million tons were exported in 1984, 58.5 million tons in 1999,

and 97 million tons in 2014.3

Over time, the consumption of coal came to be almost exclusively by the electric power

sector. According to the EIA, between 1988 and 2014, the amount of US coal consumed by

the industrial, residential, and commercial sectors declined from 83 million tons ((Energy

Information Administration, 1998), Tables 71 and 75) to 45 million tons (Energy Informa-

tion Administration (2015a), Table 26). Another large consumer of coal is the coking/steel

industry. This industry has also had a decline in coal consumption, from 41 million (Energy

3See Energy Information Administration (1994), Table 76; Energy Information Administration (2000),
Table 76; and Energy Information Administration (2015a), Table 8. By comparison, coal imports were
around 9 million tons in 2012 (Energy Information Administration, 2015a), and historically the United
States has been a net exporter of coal.
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Information Administration (1998), Table 73) to 21 million short tons (Energy Information

Administration (2015a), Table 26) over the same time period. Coal that is used in coking

has specific properties and generally is not used by power plants, though sometimes the two

sectors compete for coal. Given the relatively small amount of coal consumption by nonelec-

tric power sources, we do not model these sectors specifically, but we account for fluctuations

in their consumption over time.

2.3 Trends in Coal Production

There are three major coal-producing basins in the United States: Appalachian, Interior,

and Western. See Figure 1 for a map of the basins. Most coal production in the West is from

federal lands, whereas most coal production in the East is from private lands. Compared with

eastern coal, western coal tends to have lower heat content (the amount of heat released from

burning a certain weight of coal). The lower heat content puts western coal at a disadvantage

relative to eastern coal, but two factors favor western coal: lower production costs and lower

sulfur content (environmental regulations introduce a shadow cost on sulfur emissions from

power plants). Figure 2 shows that real per-ton production costs increased between 2002 and

2012 in all regions, and that the cost increase was greatest in Appalachia. Figure 3 shows

that this increase in production cost is largely driven by changes in labor productivity. The

solid line shows the wage rate (dollars per hour) divided by labor productivity (tons per

hour) for each basin in each year, while the dotted line is the same ratio but with constant

wages. The gap between the two curves represents the contribution of wage changes to the

observed cost changes. As the figure reveals for Appalachian mines, declining productivity

has been a much larger labor cost driver than wage increases, evidenced by the small gap

between the two plotted series. The rising relative cost of producing Appalachian coal has

likely contributed to the decline of Appalachian coal production relative to other regions,

which Figure 4 shows. Regulation of sulfur dioxide emissions from the electricity sector,

health and safety regulation (Gowrisankaran et al., 2015), and changes in permitting of new
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Figure 1: US Coal Basins

Source: Energy Information Administration

mines also have contributed to this trend.

Because coal shipments play an important role in the empirical analysis, Figure 5 illus-

trates the geographic patterns of coal shipments. For the main coal-producing states, the

figure provides a heat map of the shipments of coal to other states for the years 2002-12.

The states with federal coal leases, primarily Wyoming, Utah, and Colorado, sell to a wide

range of states. However, there are states, particularly in the Southeast, to which very little

western coal is shipped. This is likely due to transportation costs, as coal is relatively bulky

and transportation firms often have market power (Busse and Keohane, 2007). Some states,

such as Ohio and Tennessee, receive coal from multiple regions. Other states, especially

in the Southeast and Northeast, receive coal only from Appalachian mines. Additionally,

Figure 5 shows that some states consume their own production exclusively, such as Texas

and North Dakota. The fact that Western low cost coal does not reach all consumers could

be due to transportation costs or to incomplete and sluggish pass-through of mining costs

to delivered prices (Chu et al., 2017). Eyer and Kahn (2017) find that the amount of coal
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Figure 2: Estimated Variable Cost by Basin, 2002-12

Note: Average variable costs from sample of 10-K filings for publicly traded firms. Coal basin definitions
follow Stoker et al. (2005). APP: Appalachian, INT: Interior, WST: West, LIG: Lignite, PRB: Powder River
Basin.

bought from in-state mines has been increasing. These patterns suggest that market power of

shipping firms and coal mines may vary geographically. Our model of coal mine profitability,

described in the next section, accounts for such potential variation.
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Figure 3: Estimated Labor Cost by Basin, 2002-12

Note: Labor productivity data come from the Mine Safety and Health Administration (MSHA) Part-50, and
wage data come from the BLS QCEW. Coal basin definitions follow Stoker et al. (2005).APP: Appalachian,
INT: Interior, WST: West, LIG: Lignite, PRB: Powder River Basin.
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Figure 4: Annual Coal Production by Major Basin, 2002-12

Note: Annual production constructed from Mine Safety and Health Administration (MSHA) Part-50. Coal
basin definitions follow Stoker et al. (2005). APP: Appalachian, INT: Interior, WST: West, LIG: Lignite,
PRB: Powder River Basin.
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Figure 5: Deliveries by Selected Supply State, 2002-12
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13



2.4 Trends in Appalachian Mine Closures

The Appalachian region has been a major coal producer in the United States since coal

became a widely used energy source. In the recent history of coal mining, interregional

competition along with environmental regulation played a strong role in determining the

profitability of Appalachian coal mines. Throughout the last 40 years, the number of mines

operating in the Appalachian region has decreased. Among factors contributing to this

decline has been the competition with coal from the Powder River Basin (PRB) in Wyoming.

PRB coal has lower production costs than Appalachian coal and also lower sulfur content,

as noted above. The competition arises from declining shipping costs as well as regulation of

power plant sulfur dioxide emissions (Ellerman et al., 2000). As Table 1 reveals, the number

of Appalachain mines operating has fallen by two-thirds in the last 40 years. The rate of

mine closure has been relatively consistent, with a small respite in the 2000s likely due to the

fact that many power plants had installed capital controls to reduce sulfur emissions. Coal

prices started to decline in the late 1980s and remained low for much of the 1990s (Joskow,

1990; Bonskowski, 2000), which led to the consolidation of mines to favor larger mines and

those with thicker seams of coal (Bonskowski, 2000). Over this period, average per-mine

employment has increased, likely due to the movement toward larger mines.

Table 1: Average Yearly Appalachian Closures Observed by Decade

Decade Avg Closed/Year Avg Opening/Year Avg Mines Operating Avg Employee Count Avg Closure Rate Avg Opening Rate

1980s 1029.20 415 9217.30 32.30 0.11 0.04
1990s 498.70 208 5475.10 34.64 0.09 0.04
2000s 247.30 112 3674.80 39.33 0.07 0.03
2010s 241.25 74 2637.50 50.25 0.09 0.03

Source: Calculated by authors from MSHA Part 50 Data

2.5 Federal Coal Leasing Policy

In addition to promoting the construction of coal-fired power plants in the 1970s, the federal

government encouraged coal production by reforming the process for leasing federal lands to

mine coal. The Mineral Leasing Act of 1920 and the 1976 Federal Coal Leasing Amendments
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Act (FCLAA) authorize leasing of federal lands for coal production. The FCLAA was passed

after the OPEC oil embargo and instructs the Bureau of Land Management (BLM) to

manage coal leases to ensure maximum economic recovery of coal and to ensure fair market

value in the lease sales.

The main pathway firms have used to acquire leases is lease-by-application. After a firm

submits an application to acquire a lease for a specific deposit, BLM reviews the application

to determine fair market value of the deposit and to assess compliance with other regulations.

If BLM approves the lease, it holds a public sealed-bid auction for the lease. The winner

of the auction is given a lease term of 20 years with the option to renew every 10 years

after the initial term4. BLM has generally renewed leases when leaseholders have extracted

commercial quantities of coal.5

While the federal coal leasing program provides a large amount of revenue to the govern-

ment, the program may not provide fair market value. Both the Government Accountability

Office (GAO) and the Department of the Interior’s Office of Inspector General (OIG) have

issued reports raising concerns about the BLM not receiving fair market value for federal coal

leases. Government Accountability Office (2013) reports that lease valuation techniques are

not standardized across states and that 96 of the 107 leases analyzed had only one bidder.

Office of Inspector General (2013) found cases where BLM state offices accepted bonus bids

less than the statutory minimum, and reported that a large majority of lease modifications

were sold at the minimum bid. Both reports argue that the price of coal exports should

be taken into account in the determination of fair market value of coal deposits. Because

of these and other concerns, the Obama administration put a moratorium on new federal

4Leaseholders make three payments to the BLM. The first is a bonus bid paid when the firm wins the
lease auction. The second is an annual rent payment of $3 per acre. The third payment is a statutory
minimum 12.5 percent gross royalty on the value of coal produced (the statutory minimum is 8 percent for
underground coal mines, but most federal coal leases are surface mines). In 2015, the bonus bids provided
around $450 million in revenue to the federal government and the royalty rates provided $680 million (Office
of Natural Resource Revenue , 2015).

5Leases can also be modified to add adjacent tracts, typically when the adjacent tract is unlikely to
have been mined otherwise. The maximum size of a modification is 960 acres. Lease modifications are not
generally auctioned but the BLM has to ensure fair market value is received for the tract (Bureau of Land
Management, 2012).
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Table 2: 2015 Federal Coal Leases

State Officea Leases Acres % of Leased Acreageb

Colorado 54 88,471 18%
Eastern States 7 16,939 4%
Montana 49 48,408 10%
New Mexico 21 42,756 9%
Utah 73 85,037 18%
Wyoming 102 200,559 42%

Total 306 482,170 100%

Source: Data from Bureau of Land Management.
a MT state office includes ND; NM state office includes OK
b Individual percentages do not add to 100 because of rounding.

coal leases in January 2016 while the Department of Interior studied whether and how to

reform the coal leasing program (leases in operation were unaffected). In March 2017, Presi-

dent Trump signed an executive order to lift the moratorium. The Trump administration has

also sought policies that would increase coal demand, such as by weakening carbon emissions

regulations of the electricity sector.

Because of the high quality (low sulfur, proximity to surface, and thick seams) of coal

deposits in Wyoming, along with the potential cost advantage of federal leases, coal mining on

federal land constitutes approximately 40 percent of total US coal production (Government

Accountability Office, 2013). By comparison, federal lands accounted for 11 percent of total

US production in 1980 and 30 percent in 1993.6 In 2015, there were 306 active federal coal

leases and 482,000 acres under lease, with most of the leased acreage in western states (see

Table 2). Currently, most production on federal land occurs in the PRB of Wyoming. In

2013, 96 percent of federal coal production came from five states — Colorado, Montana, New

Mexico, Utah, and Wyoming — with approximately 86 percent from Montana and Wyoming

(Krupnick et al., 2015).

6See Energy Information Administration (1990), Table FE1; and Energy Information Administration
(1994), Table 12.
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3 Empirical Strategy

The intuition underlying the empirical strategy is that a capacity-constrained mine with

higher expected profits is less likely to close than a mine with lower expected profits. Based

on this intuition, the empirical strategy consists of two stages. In the first stage, for each

mine that operates in any year between 2002 and 2012, we estimate the expected profits of

that mine, given expectations of demand for the mine’s coal from coal-fired power plants,

other domestic industries (such as industrial boilers), and exports. The profits model is

forward-looking, in that profits in a particular year equal the present discounted value of

future profits over subsequent years.

In the second stage, we use a duration model to estimate the effect of expected profits on

the probability a mine closes between one year and the next. The two-stage approach allows

us to incorporate expectations of future market conditions, which would not be possible if

we simply estimate the effect of contemporaneous market conditions on closure. We describe

the estimation of the profit function and then the closure analysis.

3.1 Expected Mine Profits

3.1.1 A mine’s profit maximization

Here, we describe the basic structure of the model. We construct a partial equilibrium model,

in which a mine’s profits depend on the demand for the mine’s coal as well as its production

costs.

The market consists of mines, indexed by i; power plants, indexed by j; and shippers.

All agents maximize their profits given the behavior of other agents in the market.

Consider a mine that is open in period t and is deciding whether to close between periods

t and t+ 1. The mine’s profits in any year s > t, πit;s, depend on the price of its coal (pit;s),

its marginal costs (mit;s), and the quantity produced (qit;s).

The mine may have market power, because coal is a differentiated product and because
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of transportation costs. The demand for a mine’s coal depends on the qualities of the

coal, including ash content, heat content, and sulfur content. Transportation costs typically

account for a large share of the delivered price of coal. Consequently, a coal mine located

nearer to a coal-fired power plant can generally sell the coal to the power plant at a lower cost

than a mine located farther from the same power plant (i.e., including transportation costs).

The transportation costs create market power for the mine located closer to the plant.

Because of the market power, the mine chooses its production quantity mindful of the

effect of this choice on the equilibrium price. Specifically, the mine chooses the profit-

maximizing quantity in each year s:

πit;s = max(pit;s(qit;s)−mit;s(qit;s))qit;s

subject to qit;s < ki

(1)

where ki is the maximum production level. We refer to the optimization in Eq. 1 as the

profit function. Marginal costs are a nondecreasing function of quantity, and the production

quantity is a decreasing function of the mine’s price.

Because we do not directly observe profits, we must compute profits from Eq. 1. This

requires estimating both the demand curve and marginal cost function. Once we have

estimated these equations, we can use projected market conditions for each year s > t to

compute expected profits in year s. Then, we discount future profits back to the present and

compute the sum of expected discounted profits.

The demand curve is a function of the price of the mine’s coal and the demand from

electricity generators net of the supply from other mines. Demand also comes from domestic

consumers outside the electricity sector, such as industry, as well as exports. For convenience,

we combine these two sources of demand in the variable Xs;t. That is, we allow demand for

coal from mine i in year s > t to depend on the price of the coal, residual demand from

power plants, and shipments to industry and export markets:
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ln qis;t = α ln pit;s + γ lnQit;s + δ lnXt;s

subject to qit;s < ki for each s > t

(2)

where pit;s is the price the mine receives (in dollars per Btu); Qit;s is residual demand for

coal from US power plants (defined next); Xt;s is demand for coal from the rest of the world,

as well as from domestic consumers outside the electricity sector, as noted above; and α, γ,

and δ are coefficients.

In principle, we could estimate residual demand by modeling a noncompetitive equilib-

rium in which each mine accounts for effects of its quantity choice on the quantity choices

of the other mines. Such a model would incorporate each mine’s market power. However,

such a model would be computationally infeasible given the large number of mines and the

state space; existing models, such as that used by Gerarden et al. (2016), contain consider-

able aggregation across both mines and plants. This aggregation would not be compatible

with the mine-level closure analysis that is the focus of this paper. Given this difficulty,

we do not explicitly model simultaneous production decisions by all mines and consumption

decisions by all electricity plants. Instead, we construct a proxy for the residual demand for

the mine’s coal that incorporates information about coal demand from electricity generators,

coal supply from other mines, and market power by mines.

More specifically, we define the residual demand as the potential amount of a mine’s coal

that coal-fired power plants may purchase, given supply decisions of other mines. Intuitively,

factors that can affect residual demand include coal demand from coal-fired power plants,

supply from other coal mines, and sulfur dioxide regulation that affects the implicit price on

the sulfur content of the coal. For example, a reduction in natural gas prices reduces overall

demand for coal from coal-fired power plants, causing a mine’s residual demand curve to shift

to the origin. Alternatively, the closure of a nearby mine increases a mine’s residual demand

because the mine is competing with fewer other mines. As another example, tightening the

national sulfur dioxide emissions cap can raise residual demand if the mine’s coal has a low
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sulfur content.

We construct a proxy for residual demand based on estimated coal demand from the

electricity sector and a reduced-form representation of market power in mining and shipping.

For coal mine i, residual demand equals aggregate coal demand Qt;s net of the coal supplied

by all other mines to meet aggregate demand. Aggregate demand is simply the sum of coal

consumption across all power plants.

Turning to coal supply from other mines, the supply is a weighted sum of coal con-

sumption by each coal-fired power plant, with weights equal to the share of a plant’s con-

sumption from a particular mine, sjk, where j indexes plants and k indexes other mines.

For mine i supply from all other mines is the double summation across all coal-fired power

plants j, and all mines k other than mine i, of the product of the share and correspond-

ing coal consumption:
∑

k 6=i

∑
j sjkcjt;s. Therefore, supply by other mines varies across

mines and over time. The time-series variation arises from changes in coal demand from

coal-fired power plants, interacting with the shares sjk. Thus, residual demand is given by

Qit;s =
∑

j cjt;s −
∑

k 6=i

∑
j sjkcjt;s.

Next, we discuss the interpretation of the residual demand. The share plays an important

role in residual demand. It represents the typical shipping patterns between mines and

plants, which are the outcomes of market power exercised by mines and shipping firms. In

this way we capture in a reduced-form manner the effects of such market power on shipping

patterns. That is, we do not model the market power of the market participants directly,

but instead use the equilibrium outcomes of this market structure to construct proxies for

residual demand.

To illustrate the sources of residual demand variation, consider coal mine i located close

to a coal-fired power plant j. The plant purchases all of its coal from the nearby mine. In

that case, an increase in generation by plant j causes a proportional increase in residual

demand for mine i. As another example, suppose plant j purchases 75 percent of its coal

from mine 1 and the remaining 25 percent of its coal from mine 2. In that case, an increase
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in consumption by plant j would have a larger effect on residual demand for mine 1 than for

mine 2.

We make a few notes about this approach to estimating the present discounted value of

future profits. First, we abstract from the shipping market. Shippers may have market power

that affects the output prices faced by mining firms (Busse and Keohane 2007). However, it

is infeasible to dynamically model coal mine production, shipping, and electricity generation

simultaneously at the level of disaggregation needed for the closure analysis. Given this

difficulty, we capture the effects of market power of shippers, as well as transportation costs

between mines and plants, in the consumption shares. That is, the market shares represent

the equilibrium outcomes that result from the market power.

Second, we assume that each mine takes production decisions of other mines as exogenous.

The fact that each firm in our data accounts for a small share of aggregate eastern production

supports this assumption.

Finally, the model is deterministic. Mines are assumed to remain open if the present

discounted value of future profits is positive. In a dynamic stochastic model, mines might

remain open even with negative profits if the option value of remaining open is sufficiently

high. However, as we show below, the closure regressions should not yield biased estimates

as long as mine-specific shocks to the net present value of expected profits are uncorrelated

with mine-specific shocks to the option value of remaining open (i.e., shocks to option value

affect all mines proportionately in a county or year).

3.1.2 Estimating the demand for a mine’s coal

A mine’s profits depend on demand from coal plants, demand for exports, and marginal

costs. Here, we first outline the estimation of demand for the mine’s coal, demand for

exports, and a mine’s marginal costs. Demand for the mine’s coal is a function of the mine’s

coal price and residual demand after accounting for supply from other mines. Both price

and residual demand may be endogenous and we instrument for price using cost shifters, and
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we instrument for residual demand using consumption by individual electricity generators

predicted from a simulation model combined with a reduced-form representation of shipping

markets.

Coal exports depend on global coal prices and domestic consumption. Because domestic

consumption may be endogenous, we use the same simulation model to predict domestic

consumption as we use for the demand instrument. Finally, marginal costs depend on wages

and production. Over the next three subsections, we describe the estimation in more detail.

Next, we provide the estimation details, beginning with the demand equation. The

estimating equation for a coal mine’s demand is adapted from Eq. 2. We assume that the

same demand equation holds in any year s > t, and use t to index years in the estimating

equation:

ln qit = α ln pit + γ lnQit + τt + εit (3)

In Eq. 3, year fixed effects (τt) account for aggregate unobserved shocks to coal pro-

duction. The error term accounts for measurement error in the dependent variable and the

influence of unobserved factors on production. The year fixed effects are co-linear with na-

tional exports in Eq. 2, so we do not include exports in the estimating equation. Instead,

we estimate export demand separately as we explain below. In the demand equation, each

mine’s price and quantity data come from bilateral monthly deliveries from origin mine to

destination plant reported to EIA (for certain years we observe the origin county and not

the mine, and use county-level prices). The data include confidential data on plant fuel

purchases that EIA collects in Form EIA-423/923.

A complication with the EIA data is that the 2002-8 prices reflect only county-level deliv-

ered prices (inclusive of the free on board [FOB] mine price plus transportation cost); after

2008, Form EIA-923 prices distinguish between FOB and delivered prices as well as providing

a mine identifier. The more complete, post-2008 data are used to estimate transportation

costs for each coal-producing county. The average fraction of delivered costs attributable to
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transportation is then used to discount the estimated delivered prices and infer FOB prices

for 2002-8. This approach is similar to the methodology in Preonas (2017), which shows that

there are important cross-sectional differences in transportation costs.

We expect the price coefficient (α) to be negative. The coefficient captures the underlying

market structure. For example, if a mine’s production has a large effect on the equilibrium

price, the price coefficient would be smaller than if the production has a small effect on the

price (i.e., closer to perfect competition). We expect the coefficient on residual demand (γ)

to be positive.

Both the price and residual demand may be endogenous. Regarding price, for example, a

mine with unusually productive workers may be able to sell coal at a lower price than an oth-

erwise identical mine. Failing to measure worker productivity would yield biased estimates

of the price coefficient in the equation. A mine’s price may also be measured with error. To

address this endogeneity and measurement error, we instrument for price using cost shifters:

the average productivity at the county level. Productivity is calculated as the number of

employee hours required to produce one ton of coal reported by MSHA. Productivity in a

given county depends largely on average seam thickness, which in turn is based on historical

operations and geologic factors. For robustness, we have also tested alternative instruments,

yielding largely similar results (available from the authors by request). We also control for

the cost of burning sulfur, which depends on coal sulfur content and current sulfur emissions

spot prices.

Recall that residual demand is the demand for a mine’s coal from power plants, after

accounting for supply from other mines; we expect residual demand to positively affect a

mine’s production. Residual demand depends on consumption from coal-fired power plants

and production from other mines, both of which may be endogenous. Each power plant’s

consumption of coal, c, is endogenous to the price of coal and may be correlated with other

factors that depend on the mine. Moreover, observed production at a mine is mechanically

related to observed residual demand as we have defined it, because the mine’s production
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is used to compute residual demand. Therefore, any measurement error in the mine’s pro-

duction would bias the residual demand coefficient. Given these issues, rather than using

observed consumption to compute aggregate demand, we use the consumption predicted by

an hourly unit commitment-style model that covers most US fossil fuel-fired plants (including

nearly all coal–fired plants). The appendix outlines the structure of the model and primary

data sources, and Linn and McCormack (2017) provide further detail. Here, we summarize

the features of the model that are most relevant to our analysis.

In the model, fossil fuel–fired plants are dispatched on an hourly basis over an entire

year, taking fuel prices and aggregate demand as exogenous (markets correspond to the

three major US interconnections). For each year t, we simulate the model using observed

fuel prices and aggregate demand in that year.

The model is based on an economic dispatch model, in which units are dispatched each

hour according to their marginal costs, so that low-cost units operate when demand is low.

As demand increases, higher-cost units turn on to equate supply and demand. The model

departs from a conventional economic dispatch model by approximating constraints on start-

ing up and shutting down units; including minimum generation levels; accounting for trans-

mission congestion in a reduced-form manner similar to Davis and Hausman (2016); and

including uncertainty in aggregate demand and unit availability. Linn and McCormack

(2017) show that the model reproduces observed unit-level outcomes accurately, and more

accurately than a standard dispatch model that does not include these features.

The simulations yield coal consumption by coal-fired power plant and year t. Therefore,

fuel prices, electricity demand, and other factors create variation in potential demand over

time for a particular coal-fired plant. We compute aggregate demand by year by summing

consumption across plants.

We also address the potential endogeneity of coal shipments between mines and plants.

Specifically, the shares, sij, reflect the outcomes of any market power that the mines, shipping

companies, or electricity plants may have. That is, we do not model the market power of
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the market participants directly, but instead use the equilibrium outcomes of this market

structure. Importantly, the shares are computed in the first year of the sample and do

not vary over time. This reduces concerns that the shares may respond endogenously to

unobserved factors at mines, shipping companies, or power plants. To the extent that market

power and transportation costs are persistent over time, one expects the initial consumption

shares to be highly correlated with the actual consumption shares during the estimation

sample. Using the presample shares introduces measurement error, however, and we explain

below how the simulations are constructed to yield unbiased estimates of counterfactual

profits. Note further that using the initial shares implies that we do not include mines that

enter during the sample; as we argue below, it is unlikely that accounting for entry in the

estimation or simulations would substantially affect our results.

In short, rather than introducing bias by using observed coal plant consumption and

mine-plant shares, we use the electricity sector model to simulate cjs;t, and we compute

sij from the data but do not allow the shares to vary during the sample period. We treat

as exogenous to coal mines the inputs to the electricity sector simulations, which include

natural gas prices and electricity demand.

3.1.3 Estimating equilibrium exports

Recall that exports enter the mine’s demand equation, Eq. 2. In the demand estimation,

the year fixed effects absorb exports. In principle, we could insert observed US exports

in the profit calculation, but doing so would prevent us from adjusting US exports in the

counterfactuals considered below. For example, if natural gas prices had been lower than

observed levels, we would expect US consumption of coal to be lower than observed. Exports

might increase if mines find it more profitable to produce for international rather than

domestic consumption. Consequently, we estimate the relationship between equilibrium US

exports and US coal consumption, controlling for international prices. We use the following

estimating equation:

25



lnXt = λ1lnPt + λ2lnQt + λ3t+ λ4t
2 + εit (4)

where Xt equals national exports in year t, Pt is the average price of exported coal from the

United States, Qt is US consumption of coal, t and t2 are linear and quadratic time trends, εit

is an error term, and the λs are parameters to be estimated. Data for export quantities and

export prices are from EIA. The export data are available for each port and year, but the

port-level data are very noisy. Consequently, we aggregate across ports to compute national

exports. The quadratic time trend accounts for nonlinear and time-varying shocks to export

demand or supply. One expects US exports to increase with international prices, because

higher global prices make it more profitable to produce for international markets rather than

the US market. Exports should decrease with US coal demand because, all else equal, higher

US demand raises the profitability of producing for domestic consumption rather than for

international markets, reducing exports. For these reasons, we expect λ1 to be positive and

λ2 to be negative.

In Eq. 4, we assume that international coal prices are exogenous to exports. This

assumption is supported by the fact that aggregate US exports of steam coal typically account

for less than 5 percent of global shipments of steam coal. Consequently, mines and exporters

likely take export prices as exogenous. Note that the quadratic time trend controls for the

effects of the global macroeconomy on coal demand.

On the other hand, US coal consumption is clearly endogenous to US exports, as un-

observed factors (e.g., regulation that raises the cost of coal production) may affect both

US coal consumption and equilibrium exports. Given this consideration, rather than the

observed consumption, we use the predicted US consumption from the simulation model

described above. This variable should be exogenous to exports for similar reasons as for the

demand equation discussed above.
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3.1.4 Estimating a mine’s marginal costs

When marginal costs are not observed, it is common in the empirical industrial organization

literature to estimate marginal costs from the first order condition for price in a firm’s profit

maximization problem (e.g., Berry et al. 1995). In our case, although marginal costs are

generally not publicly available at the mine level, we do observe cost-per-ton data reported

in corporate fllings from a selection of large, publicly traded mining companies. We use the

information given in the firm’s 10-K filings to estimate a marginal cost function that allows

us to impute marginal costs for each mine in the data. Summary statistics are presented

in Appendix D, Table 8.7 The table shows that the mines included in the cost estimation

sample are larger, on average, than the mines in the full MSHA sample. The cost sample

data appear to cover the range of production values, however, as the standard deviation

is large and the largest mine appears in both datasets. The average wage and start year

are similar across the two datasets, as is the proportion of underground mines (relative to

surface operations). The mines with the cost data are more dispersed geographically, while

the majority of mines (in terms of number of unique mines, regardless of scale) are located

in the Appalachian region.

Other important cost drivers, such as the production level (qit), hourly wages, mine type

(surface or underground), and region (basin), are reported to the MSHA. We estimate the

marginal cost function by merging the two sources of data, and regressing costs per ton on

mine characteristics, as specified:

lnmit = (β1 ln qit + β2 ln q2it + β3wageit) ∗Regioni ∗ Typei

+β4Companyit + β5Y eart ∗Regioni + β6V intagei ∗Regioni + ηit

(5)

where the vector β is to be estimated. Wage is the county-level wage rate for mining

industries; Type is an indicator variable denoting whether the mine is surface, underground,

7The companies included in the cost dataset are Arch Coal, Alliance Resource Partners, Consol Energy,
Peabody Energy, and Westmoreland Coal. This set of companies provides a diverse sample of regions and
mine types, but omits smaller, privately owned mines.
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or both; Region is an indicator variable for the region or basin in which the mine operates

(values are Appalachian, Interior, Lignite, Powder River Basin, or Western); Company is

a company fixed effect controlling for management efficiency effects; Y ear is a time fixed

effect; V intage is the year the mine opened; and η is an error term. Note that the fact that

wages are computed at the county rather than mine level reduces concerns that the estimates

may be biased by mine-specific productivity shocks or bargaining power in labor markets.

V intage plays an important role because it allows for the possibility that production costs

increase as firms mine low-cost coal before high-cost coal. As in Eq. 3, wage data come from

the BLS QCEW. Regional definitions are adopted from Stoker et al. (2005). After estimating

this equation, we assume that the coefficients are the same for mines that do not belong to

the estimation for sample as for mines that do belong to the sample. This assumption allows

us to extrapolate the estimates and predict marginal costs for all mines in the MSHA data.

The estimates from estimation of Eq. 5 are presented in Table 9 in Appendix D.

3.2 Profitability and Mine Closure

The key independent variable in the closure regression is the present discounted value of

expected profits by mine and year. To estimate the present discounted value of profits,

we simulate the electricity sector model, which we used to construct the residual demand

instrument, over all years s > t using EIA projections of fuel prices and aggregate demand.

For example, for t = 2001, we use the EIA projections from the 2001 Annual Energy Outlook

for s = 2001 through 2020. Henceforth, we refer to s as the projection year. For any

particular hour in year s, the aggregate demand equals the demand in the same hour in year

t, multiplied by the EIA projected annual growth rate between years t and s. We use these

simulations to compute residual demand for each mine i, year t, and projection year s.

Profits for each mine, year, and projection year are calculated by using the fitted values

of Eqs. 3, 4, and 5 into Eq. 1. More specifically, we invert Eq. 3 to express the mine’s price

as a function of quantity, net aggregate demand, and other factors. We used observed global
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coal prices and aggregate domestic consumption to compute exports.

Equation 2, the coal demand equation, includes the parameter δ, which is the mine’s

share of exports. We estimate this parameter by starting with the difference between a

mine’s annual reported MSHA production and reported Form EIA-923 sales. This difference

is our initial guess of the mine’s exports, but it may include measurement error because we

do not directly observe the mine’s exports. To attempt to reduce the measurement error,

we account for a mine’s proximity to US ports from which coal is exported. Specifically,

we observe exports from each port, and for each mine we construct a weighted average of

US exports using the inverse of the distance between the mine and port as weights. For

example, a mine located close to a major eastern port has a higher value of the export index

than a mine located farther from the port. We regress the mine’s estimated exports on

this index, and we use the fitted values from this prediction to estimate the mine’s share in

national exports. The predicted shares are consistent with expectations; for example, East

Coast mines located close to major export ports have larger predicted shares than mines

located further inland. For further discussion of the modeling of coal imports and exports

see Appendix C.

Using the estimated parameters and observed exogenous inputs, we maximize profits by

mine, year, and projection year, and compute the sum of discounted profits by mine and

year. We use a real discount rate of 10 %, which represents a typical cost of capital for mines

during the sample.

We use the estimated present discounted value of profits by mine and year to estimate the

effect of profitability on closure. Given fixed annual production capacity, expected market

conditions, and reserve-dependent costs, increased profitability should extend the life of the

mine, reducing the probability that it closes in a given year.

A survival regression is employed to empirically model the relationship between prof-

itability and a mine’s closure decision. Specifically, the analysis utilizes a Cox proportional

hazard model that takes the form
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P [Closeit|TimeSinceOpen,Xit] = h0(t)exp(BXit) (6)

where the probability that mine i closes in year t depends on the duration the mine has been

open and a set of covariates Xit, the most important of which is the mine’s profitability. Our

estimation excludes mine-year observations where the expected profit or loss is more than

$1 billion; this cutoff causes us to drop 0.8 percent of the sample and reduces the effects of

outliers on the coefficient estimates. Some of the reported specifications of Eq. 6 include

county fixed effects in Xit. The unspecified baseline hazard function, h0(t), represents the

underlying probability of closure. This term plays an important role in the interpretation

of the estimation results and counterfactuals, as it represents an estimate of the baseline

level of closure that arises from factors not included in the independent variables in Xit.

For example, the term would include closures caused by nonlinear effects of mine age on

marginal costs or by changes in shipping costs (recall that the consumption shares in the

residual demand do not vary over time). As we noted in the Introduction and show below

in our data, the typical closure rate for coal mines is rather high.

Note that the key independent variable is the sum of profits in years s > t, discounting

profits in each year s back to year t. The present discounted value of a mine’s profits in year

t could be positive even if profits in particular years v > t are negative. We expect that in

such cases the mine remains open because it is the discounted value of profits driving the

closure decision, and not the profits in any particular year.

Information on the characteristics of mines in our sample, both those that closed and

those that remained open, is given in Table 3. The table reveals that there are many fewer

PRB coal mines than Appalachian mines. This is because coal in the PRB is located close

to the surface with thick seams, making it easier to capitalize on scale economies. Eq. 6

is estimated for Appalachian mines only; the analysis includes all mine closures observed

between 2002 and 2012.

The data for mine closure comes from the MSHA Part 50 data. The data include a

30



status code for each mine that states whether the mine is in operation, temporarily closed,

or permanently abandoned. We specify a mine as closed in the year that the status is

recorded as permanently abandoned or abandoned and sealed. In principle, one could define

closure in other ways, such as based on a mine’s employment. We provide evidence that this

specification of closure is correct in Appendix B by showing that production and employment

are close to zero after a mine closes. The vast majority of mines fall out of the sample after

their observed closure date, which provides additional confirmation of the validity of this

measure.

Table 3: Summary Statistics for Mines in the Sample

By End of Sample
Closes Remains open Overall

Mean Production (tons/qtr) 65,071 328,831 198,819
Average Workers per Mine 28.4 63.9 45.9
Average Profit 303,334 458,418 376,338
% Surface Mines 46.9 61.8 54.3
Number of Mines 2,220 1,200 3,420
Appalachian Mines 2,086 1,049 3,135
PRB Mines 4 17 21
Observations 27,933 28,582 56,515

Note: Mine summary statistics constructed from MSHA Part 50. Profits
estimated using method described in Section 3.1.2.

Before presenting the estimation results, we discuss briefly the implications of using base-

line estimated profits rather than actual (i.e., unobserved) profits in Eq. 6. Using estimated

profits results in measurement error and a different coefficient than if we could hypothet-

ically observe profits and include them in the estimation. However, the counterfactuals

considered below involve changes to estimated profits. We use Eq. 6 to estimate the effects

of the counterfactual profits on closures and compare with predicted closures using the base-

line estimated profits. This approach should yield unbiased estimates of the baseline and

counterfactual closures.
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4 Results

4.1 Estimation of Demand, Export, and Marginal Cost Equations

Profits are calculated for each mine based on its profit maximization problem from Eq.

1. The demand, exports, and marginal cost equations (Eqs. 3, 4, and 5) are inputs into

the profit maximization problem, and we first report results from these equations. Table 4

shows the results from the estimation of Eq. 3, and Figure 6 in the main text and Table 9

in Appendix D shows the result of estimation of Eq. 5. In Table 4 the coefficients on price

and residual demand both have the expected sign. The ordinary least squares estimate of

the price coefficient is likely to be biased for reasons discussed above. The price coefficient

is negative in the specification that instruments for price. The table reports the first-stage

F-statistic, which reduces concerns about weak instruments bias. Table 10 in Appendix

D shows the first stage regression results, where the coefficient on the instrument has the

expected sign and is statistically significant. In Table 4 the coefficient on residual demand

is positive, as expected, and is statistically significant. The regression also includes the

interaction of sulfur content with the acid rain permit price (and exogenous demand shifter).

The negative sign is consistent with expectations, and suggests that an increase in the sulfur

price has a larger negative effect on production from mines with higher sulfur content than

other mines.

Figure 6 compares predicted and observed marginal costs to assess the fit of the marginal

cost estimation (Table 9 in Appendix D reports the underlying coefficient estimates). The

figure shows that our predictions of marginal costs are quite close to reported costs.

Table 5 shows the results of estimating Eq. 4. The main coefficient of interest is the

coefficient on domestic consumption, because domestic consumption varies across the coun-

terfactuals discussed below. The coefficient is precisely estimated and fairly stable across

the specifications shown in the table, which differ by whether we include a quadratic or

cubic time trend, take first differences, or include quarter fixed effects. The coefficient on
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the export price varies across specifications, in both sign and magnitude, but this coefficient

does not play a direct role in the counterfactuals.

We use the cost, profit-maximizing quantity, export elasticities, and corresponding price

to compute each mine’s profits by year and projection year, over an 18-year horizon. We

discount future profits using a 10% discount rate, yielding present discounted profits by mine

and year.

The resulting profits approximate unobserved profits over the period of study. To assess

the validity of the profit estimates, for the median Appalachian mine, Figure 7 compares the

estimated profits with observed variables that may be correlated with unobserved profits, at

least over certain sub-periods of the data. The upper panel plots the FOB price of coal sold

under contract (rather than on the spot market) and the estimated production cost per ton

of coal mined and sold. We use the contract price in this analysis because approximately 78

percent of coal sold during the period of study was sold under contract; this fraction trended

upward over the study period. The FOB price is calculated by discounting the estimated

transaction price by the average share of transportation costs in total costs for coal leaving

the corresponding county, yielding an estimated mine-mouth price. The distinction between

contract and spot prices is important in this context because, although contract and spot

prices were generally highly correlated with one another through 2008, contract prices did

not experience the same dramatic collapse following the 2008 financial crisis that spot prices

did. The contract price rises steeply in the first half of the sample period before leveling off.

Figure 7 also shows that production costs rose steadily over the sample, with a pronounced

upturn in 2012.

The middle panel plots current annual profits (in 2012 US$100,000) and expected dis-

counted profits (in 2012 US$1,000,000); note the order-of-magnitude difference in the series.

The two profit measures are highly correlated with one another, and both peak in 2008 and

drop sharply after 2010.

One expects the present discounted value of profits to be highly correlated with stock
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prices. The bottom panel plots the relative change in stock prices over the period for four

large coal-mining firms and the average of these changes. While the profit estimates and

stock prices follow a similar trend pre-2008, they diverge post-2008. Two reasons are likely

responsible. First, in 2011 most publicly traded coal-mining companies used debt to pur-

chase metallurgical coal deposits at the peak of a metallurgical coal boom. As the price

of metallurgical coal fell after 2011, those metallurgical coal deposits failed to bring in rev-

enues to cover the debt obligations (Roberts, 2016). Second, many of these companies also

own Australian coal-mining assets that sell coal into the Pacific market. The Pacific coal

market has not seen a reduction in price similar to that in the United States and this has

helped keep stock prices higher than if their coal mines were all located in the United States.

Thus, we do not observe a perfect correlation between estimated profits and stock prices,

and the correlation is notably weaker after 2008. After 2008, profits decline sharply because

of the decrease in coal demand caused by declining natural gas prices and electricity demand

growth.

Table 4: Demand Function Estimation

OLS Price IV

(1) (2)

ln Price 0.467∗∗ −1.116∗

(0.221) (0.580)
ln Residual Demand 0.740∗∗∗ 0.712∗∗∗

(0.056) (0.066)
Sulfur Cost ($/ton) −0.00003 −0.0002

(0.0001) (0.0001)

Observations 1,266 1,266
Adjusted R2 0.642 0.577
First Stage F-stat 311.83

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Errors clustered at the county level. 159 clusters.
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Figure 6: Fitted vs. Actual Costs
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Figure 7: Prices, Costs, and Profitability Estimates in the Baseline Results for Median
Appalachian Mine

Top panel : Median free on board (FOB) price of transactions under contract and the estimated production
costs for Appalachian mines. Free on board prices are calculated by discounting the reported delivered
price by average transportation costs from the Appalachian basin.
Middle panel : Annual, contemporaneous profits (in hundreds of thousands of dollars) and expected
discounted profits (in millions of dollars) for the median Appalachian mine as calculated by this study.
Bottom panel : Annual average stock prices for four large, public US coal firms and their combined average
price over the study period.
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Table 5: Export Elasticity Results

Outcome: ln Exports (1) (2) (3) (4)

ln Export Price 0.44*** 0.10 -0.12 0.48***
(0.12) (0.19) (0.31) (0.12)

ln Sim. Domestic Cons. -0.53** -0.42* -0.43*** -0.47**
(0.24) (0.25) (0.17) (0.23)

Trend Poly Order 2 3 0 2
Quarter Fixed Effects No No No Yes
First Difference No No Yes No
Observations 56 56 56 56

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.2 Closure Results

Results of the estimation of Eq. 6, which links estimated profits and closures, can be found

in Table 6.8 Columns (1) through (2) show estimates of the hazard model, and columns

(3) and (4) from a linear probability model for comparison. All columns include profits and

profits squared while columns (2) and (4) adds county fixed effects to the model. In column

(1), the estimates imply an elasticity of closures to profits of -0.32, which is reported at the

bottom of the table. Column (2) reports a slightly larger elasticity, and suggests that the

county fixed effects control for unobserved variation in closure rates across counties. Because

of that, we use column (2) as the preferred model. For comparison with the preferred model

in column (2), we also report results assuming a non-linear relationship between profits and

closure in columns (3) and (4). In Figure 8 we plot predicted closure rates resulting from

the hazard model and the actual closure rates, by mine opening year (vintage). The model

fits the data reasonable well across the most frequently observed mine ages (5-35 years).

However, the model under-predicts closure early in a mine’s life, and over-predicts closure

for the few mines between 35-40 years old (albeit with large measured error).

8Additionally, regressions including the amount of economically recoverable reserves at the mine were
undertaken while one of the authors had a nondisclosure agreement for Form EIA-7A. One reason a mine
could close is that the deposit no longer has economically recoverable reserves and our estimated profits do
not include information about estimated reserves. In other words, our marginal cost estimates depend on
the mine’s age, but declining reserves could cause costs to increase nonlinearly with age, which would affect
closure independently of estimated profits. The coefficient on recoverable reserves had the expected sign
(negative) while the magnitude of the modeled profit coefficient was not different in economic significance.
Unfortunately, we are not able to include reserves in the mine closure regressions reported in the text.

37



Table 6: Mine Closure Results

Model Hazard Hazard OLS OLS
(1) (2) (3) (4)

Modeled Profit (billion $) -1.154*** -1.925*** -0.0569*** -0.112***
(0.333) (0.351) (0.0186) (0.0197)

Modeled Profit Squared -2.998*** -2.759*** -0.117*** -0.0764***
(0.770) (0.752) (0.0290) (0.0295)

County Fixed Effect No Yes No Yes

Closure Rate/ Profit Elasticity -0.32 -0.35 NA NA

Observations 10,679 10,679 10,679 10,679
Number of Mines 2,528 2,528 2,528 2,528
Observed Closures 941 941 941 941
Adjusted R2 0.006 0.022

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Mine closure as a function of modeled prots. Estimation using Cox propor-
tional hazards model shown in columns (1) and (2) and OLS linear proba-
bility model shown in columns (3) and (4).

4.3 Effects of Market Conditions and Policy on Coal Mine Closure

We assess the impact of four counterfactual demand and supply scenarios on the profitability

and closure of Appalachian coal mines, as compared with the closures predicted by our

baseline model.

The first scenario considers the reduction in electricity consumption after 2005, relative

to expectations in 2005. In the 2005 Annual Energy Outlook (AEO), the EIA projected ap-

proximately 2 percent annual consumption growth over the subsequent two decades. Actual

consumption growth was close to zero between 2005 and 2015, due to the 2008-09 economic

recession and other factors, such as the adoption of energy efficiency. The counterfactual

uses projected consumption from the AEO 2005 rather than from the AEO’s 2006-12, which

are used in the baseline. Therefore, the counterfactual consumption growth is higher than

that used in the baseline. The higher consumption growth in the counterfactual should

increase discounted profits, reducing counterfactual closure relative to the baseline. Com-

paring the baseline and counterfactual identifies the effects of lower-than-expected electricity

consumption growth on mine closure.
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Figure 8: Estimated vs. Observed Closure Rates, by Mine Age

Note: Plotted line shows the average observed closure rate by mine age. Plotted points show the
estimated closure rate modeled from the hazard model shown in column (2) of Table 6. Vertical
lines represent the 95% confidence interval for the estimated mean closure rate.

The second scenario considers the decrease in natural gas prices that occurred after 2008.

Coal and natural gas are substitutes as fuels for electricity generation. Numerous studies

document the short-run and long-run reduction in coal consumption caused by the decline

in natural gas prices after 2008 (e.g., Linn and Muehlenbachs (2018), Cullen and Mansur

(2017), Fell and Kaffine (forthcoming), and Holladay and LaRiviere (2017)). However, there

has been limited empirical evidence linking low gas prices to Appalachian coal production;

this paper provides the first substantiation of such an effect. To model this effect, rather

than using the projected fuel prices from the AEO in each year between 2009 and 2012, we

instead use the AEO 2008 to project prices in each year after 2008. Effectively, this scenario

supposes that projections of fuel prices after 2008 were the same as projections made in 2008.

For example, when we estimate baseline profits in year 2009 and projection year 2012, we

use the AEO 2009 for the projected prices in 2012. In the counterfactual, we use the (higher)

AEO 2008 projected prices for 2012. The higher natural gas prices in the counterfactual are

expected to raise coal demand and increase mine profits, reducing closure.

The third scenario considers the dramatic increase in Appalachian mining cost between

39



2002 and 2012. As described in Section 2.3, productivity declined substantially in the Ap-

palachian region over the study period. We expect such declines to result in higher costs,

reduce profits, and increase closure. In this counterfactual, we assume that productivity for

each mine was equal to the maximum observed level for the mine’s entire life. For most

mines, the maximum occurs near the beginning of the sample. Comparing the baseline and

counterfactual predicted closures shows the effects of the observed productivity decline on

mine closure.9

The fourth scenario addresses the impact of federal coal leasing policy on Appalachian

coal mine profits and closure.10 Because most production of federally leased coal comes from

the PRB region, the scenario focuses on this area. We use the model to predict the effects of

a hypothetical policy on mine profits and closure, due to the absence of variation in federal

policy during the sample period. Because the PRB mines operate on very thin margins (less

than $1/ton), small increases in costs could cause the mines to become unprofitable and

close or not renew their leases. In this scenario, we consider a hypothetical policy that raises

PRB production costs sufficiently to close the 10 PRB mines that have the highest costs

(these have costs above $12 per ton).

The three residual demand scenarios (high gas prices, high electricity consumption, lower

competing supply) are constructed by manipulating the residual demand variable in the

demand equation, Q in Eq. 3. For the gas price and electricity demand scenarios, the

electricity model is re-simulated using the counterfactual consumption or gas prices, resulting

in counterfactual electricity consumption by coal-fired plant and projection year. These

counterfactual consumption levels are used to compute counterfactual residual demand. The

natural gas price scenario has a large effect on an individual mine if a large share of that

mine’s coal is sold to coal-fired electricity generators that are in close competition with

gas-fired generators.

9Alternatively, we could set counterfactual productivity for each mine equal to its value in 2002 for the
same mine. We note that the results are qualitatively similar if we take that approach instead.

10For this scenario we assume that Interior basin mines do not alter production. While this is a strong
assumption it helps highlight how much competition there is between the Western and Appalachian basins.
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For the PRB leasing scenario, residual demand is recalculated assuming that sij = 0 for

all i, j associated with the PRB mines selected for closure. In other words, if the highest-cost

PRB mine is mine i = 1, closing this mine yields s1j = 0 for all j. Closing i = 1 and i = 2

yields s1j = 0, and s2j = 0, and so on. We then rescale the shares so that they sum to one

for each plant, which means implicitly that when a PRB mine closes coal plants increase

consumption from other mines proportionately to their pre-closure consumption from those

mines. This calculation raises residual demand for all Appalachian mines, relative to the

baseline. This effect is relatively large for mines that sell to coal-fired plants that purchase a

large share of coal from PRB mines in the baseline. In the counterfactual, those plants have

to purchase from Appalachian mines instead, increasing residual demand, and by a different

amount for each mine. However, by construction, all mines experience some increase in

their residual demand regardless of whether they supply directly to affected plants as overall

market supply has contracted.

Because the counterfactuals affect different components of discounted profits, the results

depend on different aspects of the estimation. For example, the consumption, natural gas,

and PRB counterfactuals affect residual demand, because of which hypothetically changing

the residual demand coefficient in Eq. 3 would affect the results of these scenarios but not

the cost scenario. In contrast, the third scenario is constructed by using the counterfactual

costs in the profit calculations.

Figure 9 presents the results of the three counterfactual scenarios and the baseline. The

upper panel compares coal prices under the baseline and four counterfactuals, while the lower

panel presents total discounted profits (the figure also presents a PRB scenario, which we

describe below). The electricity consumption and gas price scenarios have noticeable impacts

on prices and profits. Both the consumption and gas price scenarios raise coal prices above

the baseline levels, reflecting the higher coal demand. By the end of the sample period, the

gas price counterfactual has a larger effect on prices than does the consumption counter-

factual. Both counterfactuals cause profits to be higher than baseline profits, particularly
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by the end of the sample. The productivity scenario reduces coal prices because the higher

productivity increases production. The supply scenario has a larger effect on profits than

the two demand scenarios (except at the very end of the sample).

Next, we calculate the number of mines that would have remained in operation in each

scenario. Because we observe employment at each mine, we use the avoided closures in each

scenario to estimate avoided layoffs. Table 7 presents results for the four counterfactual

scenarios. We use the closure model fitted to the baseline profits to estimate baseline clo-

sures and employment losses. We use counterfactual profits and the estimated coefficients

to estimate counterfactual closures and employment losses, and then compare these levels

with the baseline levels for the entire 2002-12 period. By construction, the baseline and

consumption counterfactual (Dmd 05) levels equal one another for the years 2002-05, and

the baseline and gas counterfactual (Gas 08) levels equal one another for the years 2002-08.

The baseline and productivity counterfactual (Prod Max) levels can differ from one another

in each year. Because of this setup, the cost counterfactual could have larger effects than

the other counterfactuals because it occurred earlier in time. Nonetheless, we compare the

counterfactuals over the entire 2002-12 period because we are interested in the effects of each

shock on closures and employment over the entire period, not in any specific year.

In the first row of Table 7, we present the estimated change in the hazard rate for the

average mine in each scenario. Multiplying the estimated hazard reduction to a mine’s life

yields the number of additional years a mine would operate under each scenario. The table

presents average number of additional years across mines. The scenarios add between 0.27

and 2.17 years of mine life. Adding these years to the observed closure date, we are able to

determine whether the additional profitability would have been enough to defer closure to

some date after the end of our study period, 2012. We estimate that our scenarios would

have deferred closure for between 125 mines (in the consumption scenario) to 274 mines (in

the maximum productivity scenario).

For reference, we observe the closure of 1,699 mines between 2002 and 2012. It is impor-
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Figure 9: Appalacian Mines’ Profitability and Trends by Scenario and Year

Top panel : Median FOB contract prices for Appalachian mines by scenario. Base is the baseline result,
Prod. Max assumes mines operated at their observed maximum productivity for the entire period, Dmd 05
assumes demand had grown at the rate projected by EIA’s AEO 2005, Gas 08 assumes that the AEO 2008
natural gas price forecast had been correct (essentially eliminating natural gas price declines from the
“fracking” boom), and PRB assumes the 10 highest-cost PRB mines had closed in 2002.
Bottom panel : Median estimated annual expectations for discounted future profitability of Appalachian
mines by scenarios described above.
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tant to note that many of these mines may close for reasons other than the factors included

in estimated profits, such as the depletion of reserves, regulatory compliance, or physical

damage to the mine. From our survival model, it turns out that 1,287 mines closed inde-

pendently of changes in profits during our sample period. While this number may seem

high, it is consistent with typical closure rates observed prior to our sample. Therefore, it

is most relevant to compare the number of avoided closures in the counterfactual scenarios

with the 412 mines that closed due to declining profits in our sample period. Based on this

comparison, each of the demand counterfactuals (in isolation) caused roughly one-third of

the mines to close, and the supply shock caused the closure of two-thirds of the mines.

Furthermore, with the observed average employment levels at these mines, we are able to

determine how many layoffs might have been deferred or avoided in each counterfactual sce-

nario. Depending on scenario, this figure ranges between 4,551 and 15,023. By comparison,

there were about 75,000 coal mine employees in 2002 in the United States. Note that these

estimates do not incorporate mine openings (which might increase in the counterfactuals) or

shifting of workers from one mine to another; we discuss the issue of openings below.

Table 7: Implied Avoided Mine Closure and Layoffs by Scenario

Prod. Max Gas 08 Dmd 05 PRB 10

Decrease in Hazard 0.15 0.06 0.07 0.02
Avg Additional Years 3.2 0.4 0.7 0.4
Closures Avoided 352 142 157 91
Layoffs Avoided1 15,023 6,294 6,883 4,551

1Layoffs not reflective of overall employment as they do not reflect hiring
Note: Prod. Max assumes mines operated at their observed maximum pro-

ductivity for the entire period, Dmd 05 assumes demand had grown at the rate
projected by EIA’s AEO 2005, Gas 08 assumes that the AEO 2008 natural gas
price forecast had been correct (essentially eliminating natrual gas price declines
from the “fracking” boom), and PRB assumes the 10 highest-cost PRB mines
had closed in 2002.

Figure 9 and Table 7 show that the PRB scenario has a smaller effect on coal prices,

mine profits, closures, and employment than the other scenarios. Therefore, although a

hypothetical policy that raises production costs on federal lands and leads to the closure of
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a substantial number PRB mines would benefit Appalachian mines, the effect is relatively

small. This result reflects the fact that PRB and Appalachian coal are not close substitutes

for one another,11 given transportation costs and differences in characteristics.

We note that we do not model coal mine openings in the counterfactuals. Although

we do not model mine openings explicitly, the information in Table 1 provides a rough

approximation of how many openings our model may be missing. Throughout the 2000s,

when coal prices were relatively high, the Appalachian region saw around 110 openings per

year. From 2010 to 2012, there were only 75 openings per year. Thus around 150 mines

would have been added to our sample of around 2,800 mines operating from 2010-2012.

These mines would have taken some of the increased residual demand in each scenario that

we now apportion to the existing mines, which would reduce the profits shown in Figure 9.

However, the change in openings would be an order of magnitude smaller than the change

in closings reported above, suggesting that the profitability shocks primarily affect closings

rather than openings. Moreover, even if the counterfactuals did affect openings, they would

affect total coal mine employment only to the extent that labor productivity differs between

opening and closing mines.

Similarly, we do not explicitly model the impact of natural gas prices on coal demand

that occurs through the change in transportation costs as discussed in Preonas (2017). He

shows that increases in the price of natural gas would lead to increases in coal prices that

are not as large as would have been seen with a competitive transportation sector. Since

this effect is not modeled, our gas price counterfactual profit number is larger than it would

be had the transportation sector been modeled explicitly. However, the size of the impact

give in Preonas (2017) implies that the change in profits would be relatively small.

The above scenarios provide insight to the relative importance of electricity consumption,

natural gas prices, mine worker productivity, and PRB leasing in explaining Appalachian

mine closures. However, the mine closures that appear to be unexplained by expected profits

11More precisely, we observe relatively few power plants that purchase substantively from both PRB and
Appalachian mines in 2002, the year consumption shares (sjk) are determined.
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in Table 7 naturally leads to the question, how high would profits need to be in order to

avoid closure of a larger number of mines? Using the parameter estimates fitted from Eq.

6, we arbitrary increase each mine’s observed profits from 0 to $10 million by $0.1 million

steps. From the computed change in each mine’s chance of survival, we determine whether

the given profit increase would be enough to defer closure to some time outside of our sample

period. The profits required for a given number of mines to avoid closure in this way are

plotted in Figure 10. For reference, the number of mines avoiding closure in the maximum

productive scenario is highlighted on the figure. An important takeaway of Figure 10 is that

the profit-closure response becomes relatively inelastic after approximatively 500 mines have

avoided closure, each having experienced around a $7.5 million increase in discounted profits.

To induce additional reductions in closures, more substantial increases in profits would be

required. This result implies that constructing counterfactuals that include multiple shocks

(such as natural gas prices and consumption), would not substantially increase the total

number of closures. For this reason, we construct the counterfactuals by considering each

shock one at a time, rather than combining the shocks.

46



Figure 10: Increase in Profits Required to Avoid Mine Closures

5 Conclusion

The fate of coal-mining communities continues to receive attention from politicians and the

popular press. Although there has been heated debate at all levels of government on policies

affecting coal mining, little is known about the recent causes of coal mine closures or about

the effects of hypothetical future policies on the sector.

This paper models a coal mine’s closure decision as a function of its expected profitability.

This approach allows us to simulate how those profits and closure decisions would change

under a number of counterfactual scenarios. We find that rising production costs explain

about two-thirds of the observed coal mine closures caused by declining profits between 2002

and 2012. Natural gas prices and reduced electricity consumption independently explain

about one-third of the closures.

While this paper has addressed four potential causes for the decline in Appalachian
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coal mining, our modeling framework is appropriate for the evaluation of other policies and

market forces that may have affected this industry and region. These include the labor to

capital substitution that has occurred within and between coal basins (especially since 1990),

emissions regulations directed at coal-fired plants, and environmental regulation directed at

coal-mining operations, particularly restrictions around eastern US surface mining (so-called

mountain top removal).

Another important area of future research is better understanding the environmental,

economic, sociological, and heath impacts from the continued decline of an industry that

has defined life in rural Appalachia for a century.
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A Overview of Hourly Generator Operation Model

This appendix outlines the model used to estimate coal consumption by coal-fired power

plant, year, and projection year. We describe the model and then the data. Linn and

McCormack (2017) provide additional details about the model.

A.1 Market Equilibrium

The model contains three markets for each year, t, and projection year, v, with the mar-

kets corresponding to the three major US interconnections (East, West, and Texas). Hourly

electricity demand is exogenous and perfectly inelastic with respect to the equilibrium elec-

tricity price. Generation from nonfossil generators, such as nuclear and wind-powered, is

also exogenous.

There is a set of fossil fuel–fired units in each market that have already been constructed,

and for which capital costs are sunk. Each unit takes fuel prices, electricity prices, and

generation from other units as exogenous, and chooses a production level to maximize profits.

At the beginning of each year and projection year, the unit exits the market if discounted

future profits are negative (in the model, profits are deterministic).

There is also a set of potential entering units. For these units, construction costs have

not yet been paid. These units enter if discounted future profits exceed the construction

costs.

Each market clears each hour of the year and projection year, and the equilibrium is

determined differently in each of the three types of hours. The first type of hour is a peak

hour, which is the hour with the maximum electricity demand for the corresponding day and

market. Near-peak hours occur within several hours of the peak hour, and on the same day.

Other hours include all hours that are neither peak nor near-peak hours.

For peak hours, there is a system operator who solicits bids from the units to supply

electricity during that hour. In its bid, each unit specifies a generation level (typically, its
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rated generation capacity) and a minimum price above which the unit will produce that

amount of electricity. The operator stacks the bids in order of increasing price bids and

accepts bids so that total generation from accepted bids equals electricity demand.

For near-peak hours, all units that operate in the peak hour must generate an amount of

electricity no less than a unit-specific minimum generation level. Units that do not operate

in the peak hour cannot operate in the near-peak hours. This structure prevents units from

turning on and off many times per day. Units that operate in the near-peak period submit

bids to the system operator that include generation levels and minimum prices. The operator

stacks the bids by increasing prices, and accepts bids so that generation equals demand. For

near-peak hours, total generation includes the generation levels from the accepted bids, plus

the minimum generation levels of the units whose bids are not accepted. The equilibrium

price is equal to the highest bid among the accepted bids. Note that some units operate

at their minimum generation levels even if their marginal costs are greater than the price;

they do so because the resulting losses are more than offset from the profits earned during

the peak hour. This market structure thus approximates behavior in a dynamic model that

includes fixed costs of starting up or shutting down and unit-level constraints on changing

generation levels across hours (e.g.,(Bushnell, 2008; Castillo and Linn, 2011)).

During the other hours, equilibrium is determined according to simple economic dispatch.

Because a unit’s operation in other hours does not affects its profits in near-peak or peak

hours, in other hours all units submit minimum price bids equal to their marginal costs.

The operator stacks bids by increasing minimum prices, and accepts bids to equate total

generation of accepted bids and demand. The equilibrium price is equal to the marginal

costs of the unit with the highest costs among those with accepted bids.

Profits for each unit are computed for each year and simulation year, and are discounted

to the present year using a 10 percent discount rate. Units with negative profits exit, and the

model is resimulated using the resulting smaller set of units. The procedure is iterated until

all units have non-negative profits. After the model is solved, we compute coal consumption
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by plant, year, and projection year.

A.2 Data and Parameter Estimation

The fuel prices are from EIA projections in the AEO from various years. For example, for

the year 2001, we use projections from years 2001 through 2020 from the AEO 2001.

For electricity demand, we begin by computing total observed fossil generation by year,

hour, and market from CEMS. We then use the corresponding AEO to scale up hourly

generation by the projected electricity consumption growth. For example, for year 2001 and

projection year 2002, we use the hourly CEMS generation from 2001, which we scale up by

the projected consumption growth between 2001 and 2002 from the AEO 2001. Implicitly,

we assume that consumption grows proportionately across hours in a year.

The set of existing fossil units (i.e., those that have sunk construction costs) includes

all units in CEMS that operate in the corresponding year. Potential entrants include all

units that are observed to enter between the year and 2015, which is the most recent year

of CEMS data. Potential entrants also include all units in the Form EIA-860 data that are

listed as proposed units, meaning that they have entered permitting and construction phases

sometime after 2001.

Each unit’s fuel costs are computed from the fuel prices and its observed heat rate (the

ratio of average heat input to generation observed in CEMS). Nonfuel costs and minimum

generation levels are estimated as described in Linn and McCormack (2017). The solution

algorithm and the process for determining which units exit and which enter are also described

in Linn and McCormack (2017).
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B Mine Closure Date Checks

The definition of a mine closure is clear in practice but can be difficult to ascertain in the

data. Our measure of mine closure is the permanent closure of an operating mine.12 To

ensure that we are correctly specifying a mine closure, we look at reported employment and

production in the years leading up to and after our defined year of closure. Figures 11 and

12 show box plots of the ratio of a given year’s employment or production relative to the

maximum amount ever reported for the mine in the data. The bold line reports the median,

and the top and bottom of the box report the 25th and 75th percentiles while the ends of

the whiskers are the 5th and 95th percentiles and the dots reveal any outliers. Figure 12

shows that production levels drop to zero on the year of closure, with a few mines reporting

some production the year after closure, likely the result of coal already mined but not yet

processed for delivery. Figure 11 shows an initial drop in employment levels when a mine

closes, then a rebound 6 to 10 years later. This residual may be due to remediation of the

mine site that is required by both federal and state laws, but these employment/production

data are reported for only a handful of mines after reported closure occurs, indicating that

the vast majority of operations simply leave the sample.

12Specifically, mine closure occurs on the date MSHA classifies the mine as either abandoned or abandoned
and sealed.
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Figure 11: Ratio of Employment to Maximum Employment

Figure 12: Ratio of Production to Maximum Production
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C Imports and Exports

Coal imports and exports are an additional consideration in the modeling approach. While

coal trade is only a small portion of the market as a whole, it may have especially large

impacts on a disaggregate basis for particular mines or plants. While foreign mines are not

considered in the closure regression models, their supply to particular plants is readily incor-

porated into the modeling framework as consuming coal plants note the country of origin for

purchases when these purchases are not made from domestic mines. Exports are somewhat

more difficult. The EIA reports exports at an aggregated port level (the point of export)

rather than mine level. We model these ports in much the same way as we model plants

(but taking the given export quantities as exogenous rather than simulating their demand).

To determine the share that each mine contributes to a given port’s exports (and therefore

the implied export demand for the particular mine), we exploit several characteristics. We

utilize the geographic distance from each mine to each port, the export quantities at each

port, and the quantity of coal that is produced at a given mine, but not purchased by a

plant (i.e., missing from the Form EIA-923 transaction data). While the difference between

observed production in the MSHA data and the purchased coal by plants as recorded by

Form EIA-923 is unlikely to directly measure export quantities (as this number captures

stockpiling and related production activities), we model this difference as a function of dis-

tance from port to mine and the export quantiles of ports in order to create a more credible

measure of coal export demand at a mine level. We expect mines located closer to ports

with large export volumes to have a greater share of produced but unsold coal represented in

export quantities. The exports regression takes the specific form in Eq. 7 and is estimated

using OLS.

ln(qProduced
it − qSoldit ) = ln(

∑

j

Exportsjt
Distanceij

) + Y EARt +MONTHt + εit (7)

The logged difference between each mine i’s production (measured by MSHA) and pur-
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chases by plants (measured by EIA) is regressed on the logged, inverse distance-weighted

quantities of exports from each port j and time effects. The fitted values from Eq. 7 are

used to calculate the corresponding share of each port’s exports to each mine’s production,

sij as above. Export demand from each mine is calculated from these share values and the

observed level of exports from each port.

D Additional Tables

Tabel 8 provides information comparing the data used for the marginal cost estimation and

the larger MSHA dataset for which these parameter estimates were fit. The companies

included in the cost dataset are Arch Coal, Alliance Resource Partners, Consol Energy,

Peabody Energy, and Westmoreland Coal. This set of companies provides a diverse sample

of regions and mine types, but omits smaller, privately owned mines. Table 8 shows that the

mines included in the cost estimation sample are larger, on average, than the mines in the

full MSHA sample. The cost sample data appear to cover the range of production values,

however, as the standard deviation is large and the largest mine appears in both datasets.

The average wage and start year are similar across the two datasets, as is the proportion of

underground mines (relative to surface operations). The mines with the cost data are more

dispersed geographically, while the majority of mines (in terms of number of unique mines,

regardless of scale) are located in the Appalachian region.

Results from estimation of Eq. 5 are presented in Table 9.

The first stage results from estimation of Eq. 2 are presented in Table 10.
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Table 8: Summary Statistics of Corporate Filings (Cost) Sample Compared with MSHA
mines

Variable Sample N Mean St. Dev. Min Max

Annual Production (’000 tons)
Cost 839 10.25 19.81 0.00 116.20
MSHA 62,207 0.74 4.16 0.00 116.23

County Wages (All Industries, $/week)
Cost 882 693.83 147.56 395 1,144
MSHA 62,090 660.02 127.74 364 1,266

Mine Start Year
Cost 446 1979 17.05 1925 2012
MSHA 62,177 1984 17.92 1950 2012

(% Appalachian Mines)
Cost 362 41%
MSHA 54,635 88%

(% Underground Mines)
Cost 434 49%
MSHA 26,039 42%
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Table 9: Marginal Cost Equation Estimates

Dependent variable: Cost Per Ton

Coefficient (Std Error)

q 0.058 (0.527)
q2 −0.009 (0.634)
wages 0.0004 (0.0004)
Mine Type:S/U 0.190 (0.229)
Mine Type:U 0.101 (0.216)
Company:Consol −0.0001 (0.016)
Company:Peabody −0.199∗∗∗ (0.029)
Company:Westmoreland 0.042 (0.050)
Vintage Year −0.0002 (0.0003)
q x Region:INT 0.018 (0.529)
q x Region:LIG −0.058 (0.528)
q x Region:PRB −0.056 (0.527)
q x Region:WST −0.057 (0.527)
q2 x Region:INT 0.004 (0.634)
q2 x Region:LIG 0.009 (0.634)
q2 x Region:PRB 0.009 (0.634)
q2 x Region:WST 0.009 (0.634)
wages x Region:INT −0.001∗∗ (0.001)
wages x Region:LIG −0.0004 (0.0005)
wages x Region:PRB −0.001 (0.0005)
wages x Region:WST −0.001 (0.0005)
q x Mine Type:S/U −0.058 (0.529)
qx Mine Type:U −0.071 (0.528)
q2 x Mine Type:S/U 0.010 (0.634)
q2 x Mine Type:U 0.011 (0.634)
wages x Mine Type:S/U −0.0004 (0.0004)
wages x Mine Type:U −0.0002 (0.0004)
Region:INT x Mine Type:S/U 0.230 (4.638)
Region:INT x Mine Type:U −0.591∗∗ (0.289)
Region:WST x Mine Type:U 1.341∗∗∗ (0.386)
Region:INT x Vintage Year 0.0002 (0.001)
Region:LIG x Vintage Year 0.0002 (0.002)
Region:PRB x Vintage Year −0.001 (0.004)
Region:WST x Vintage Year 0.0001 (0.002)
q x Region:INT x Mine Type:U −0.002 (0.529)
q x Region:WST x Mine Type:U 0.154 (0.847)
q2 x Region:INT x Mine Type:U −0.006 (0.634)
q2 x Region:WST x Mine Type:U −0.058 (0.779)
wages x Region:INT x Mine Type:U 0.001∗ (0.001)
wages x Region:WST x Mine Type:U −0.0002 (0.001)
Constant 3.335∗∗∗ (0.604)

Year Fixed Effects Yes
Region Fixed Effects Yes
Year x Region Yes

Observations 399

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: First-stage Estimates of Demand Regression

ln Price

Productivity (’000 hours/ton) −0.020∗∗∗

(0.001)

ln Residual Demand 0.003
(0.004)

Sulfur Cost −0.0002∗∗∗

(0.00002)

Constant 4.984∗∗∗

(0.070)

Year Fixed Effects Yes

Observations 1,266
Adjusted R2 0.612

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Excluded instrument is a supply-side shifter: county-average mining labor pro-
ductivity. Residual demand and sulfur cost are exogenous demand shifters.
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