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Introduction  

 Movements in the spot and futures prices for primary commodities traded on 

formal exchanges are of key interest to portfolio managers, producers, consumers, 

hedgers and speculators.  This paper analyzes the linkage between future and spot prices 

for seven mining products traded on the London Metal Exchange (LME), taking into 

account the relationship between the quantities held on inventories of these products and 

the variability of their prices. 

 For years, the theory of storage or “cost-of-carry model,” originally proposed by 

Working (1933) and Kaldor (1939), has been the framework of analysis for the linkage 

between spot and futures prices. The model states that the spread between spot and 

futures prices is determined by fundamental supply-and-demand conditions and is related 

to storage costs, inventory levels and convenience yields.  Empirical work by Fama and 

French (1988) finds considerable support for the theory when studying precious metals 

such as gold and silver, and base metals such as copper, zinc and aluminum.   

Market participants are concerned with trend movements and the difference 

between futures and spot prices (the ‘basis’).  Relative volatilities are also of paramount 

importance. The famous Samuelson hypothesis (1965) provides a starting point for 

discussions involving volatility: Futures prices vary less than spot prices, and the 

variation of futures prices is a decreasing function of maturity.  Fama and French (1988: 

1075) develop an interesting refinement of the much-tested Samuelson’s proposition: 

“futures prices are less volatile than spot prices (meaning that Samuelson hypothesis 

holds) when inventory is low.  When inventory is high, however, the theory predicts that 

spot and futures prices have roughly the same variability.” 
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 Much of the Fama-French analysis focuses on the interest adjusted basis (IAB):   

                     , ,log log * ,t t T t t T t tIAB F P i T+ +≡ − −                           (1.1) 
                    

where tP  is the spot price at time t, ,t t TF +  is the futures price at t for delivery at t + T, and 

,log(1 )t TB ti i≡ +  is the continuously compounded (short term) interest rate on T-bills over 

the maturity of the futures contract.  They highlight a number of testable implications, 

which we dub the Fama-French-Samuelson (FFS) hypotheses: 

• Hypothesis I (the “cost of carry” proposition): Interest-adjusted basis is a positive 
concave function of the level of inventories (Fama and French 1988: 1077). 

 
• Hypothesis II: When the interest-adjusted basis is negative (indicating that 

inventory is “low” or the market is ‘tight”), the interest-adjusted basis is more 
variable (Fama and French 1988: 1092).  

 
• Hypothesis III (The Samuelson Hypothesis): Future prices vary less than spot 

prices.   
 
• Hypothesis IV (The Fama-French Hypothesis): When inventory is low, there is 

more independent variation in spot and future prices, whereas when inventory is 
high, future and spot prices are almost perfectly correlated. 

 
 

In their empirical work, Fama and French (FF) use the following dummy variable 

to measure market tightness:  

 1 0
0 ,

t
t

IAB
D

otherwise
<⎧

= ⎨
⎩

 (1.2) 

 

where the subscript notation on IAB from (1.1) has been simplified by leaving the t + T 

implicit. They provide the following justification for this dummy variable: 

A natural approach would be to test directly the hypotheses about 
inventory and the variation of spot and futures prices.  The metals we 
study are produced and consumed internationally, however, and the 
accuracy of data of short-term variation in aggregate inventory is 
questionable.  We use a proxy for inventory suggested by the storage 
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equation [our equation (1.7) below].  When inventory is high, the marginal 
convenience yield on inventory is low and the interest-adjusted basis is 
positive.  When inventory is low, the convenience yield is high and the 
interest-adjusted basis is negative.  Thus, the sign of the interest-adjusted 
basis is a proxy for high (+) and low (-) inventory. (Fama and French 
1988: 1079) 

 
 Although we consider the Fama-French market tightness dummy, we also use 

data on inventories at LME warehouses around the world as a proxy for market 

conditions. While not a comprehensive measure of all inventories held by producers, 

intermediaries, traders and final consumers, LME stocks are presumably a reasonable 

(inverse) proxy for global market tightness.  It is not clear a priori which proxy is 

preferable. However, it is clear that some of the FFS hypotheses are about spot price-

futures price linkages in levels, while others pertain to variances and covariance (or 

correlation).  

 Some recent works (e.g., Geman and Smith 2012; Symeonidis, Prokopczuk, 

Brooks and Lazar 2012) evaluate testable hypotheses of the theory of storage for mineral, 

energy and agricultural commodities using traditional statistical techniques such a 

correlation and regression analysis.  They do not, however, properly control for 

econometric issues such as non-stationarity and time-varying volatilities present in 

commodity prices.  This paper develops a number of tests of the FFS hypotheses using 

both univariate GARCH and vector error correction - multivariate GARCH (MGARCH) 

models of conditional volatility and conditional correlation. We apply these tests to seven 

industrial metals traded on the London Metal Exchange (LME).   

The rest of the paper goes as follows.  Section I briefly reviews the cost-of-carry 

model (or theory of storage), which describes a hypothesized relationship between the 

IAB and the level of inventory for the commodities in question.  Section II provides 
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striking graphical evidence on Hypothesis I (the concave relationship between IAB and 

inventory) and Hypothesis II (the dependence of the variance of IAB on the level of 

inventory holdings) using nonparametric kernel estimation.  Section III carries out unit 

root and cointegration tests that are precursors to the model estimation that follows. 

Section IV presents the results of the estimation of cost-of-carry models relating IAB to 

LINV with GARCH processes that depend on different measures of market tightness. The 

results provide strong empirical support for Hypotheses I and II.  Section V estimates 

bivariate error correction models for futures and spot prices, taking into account the long-

run relationship among LF, LP, i and LINV in levels – as implied by the COC model – as 

well as the multivariate GARCH nature of their respective error processes.  A number of 

hypothesis tests based on these VEC-MGARCH models provide strong support for our 

generalized Samuelson’s hypothesis (III), and weaker support for the Fama-French 

hypothesis (IV).  Section VI presents conclusions and final comments.  

 
 
I   Conceptual Framework: Cost-of-Carry Model 

 The theory of storage relates the spot and futures prices for a commodity by 

comparing two strategies for securing a unit of the commodity T periods in the future.   

 
Strategy 1: Purchase a futures contract at time t for delivery of one unit of metal at t + T 

at price Ft,t+T.  As funds are not needed until the contract matures, they earn (continuously 

compounded) interest in the meantime, i. Thus, the present value cost of this strategy for 

obtaining one unit of the commodity at t +T equals: 

 
                                                           1 , .i T

t t TPV e F−
+=                                                    (1.3) 
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Strategy 2: Purchase the commodity in the spot market at price Pt and hold until t + T.  

Under this strategy the purchaser will have to pay warehousing (storage and insurance) 

costs, which are assumed to equal w per dollar of inventory per period.  The present value 

of strategy 2 equals: 

                                                            2 .wT
tPV Pe=                                                        (1.4) 

 

In the simplest model of equilibrium (to be generalized below to include convenience 

yields), the present values of the two strategies should be equal so as to avoid arbitrage 

opportunities. This implies that: 

                                                          ( )
, ,i w T
t t T tF Pe +
+ =                                                    (1.5) 

or in natural logarithmic terms where the IAB is in square brackets: 

                      ,[log log * ] * 0t t T t t tF P i T w T+ − − − =                      (1.6) 

This equilibrium has implications that are not supported by the data for most 

commodities: (1) the IAB should always be non-negative (assuming warehousing and 

insurance costs are non-negative), and (2) the futures price should always lie above the 

spot price.  That is, the market is always in contango. 

Empirically, however, we observe that the IAB is sometimes positive and 

sometimes negative; commodity markets are sometime in contango and other times in 

backwardation.  Figure 1 for the case of copper is illustrative.    
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Figure 1: Futures and Spot Prices, Basis, and IAB for LME Copper* 
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          * LF: log of the futures price. LP: log of the spot price. CU: Copper. IAB: Interest Adjusted Basis. 

 

To explain backwardation, the theory of storage articulated by Working (1948, 

1949), Telser (1958), Brennan (1958, 1991), and Williams (1986) introduces a 

‘convenience yield’ from holding inventory (i.e. a spot position).1,2  The convenience 

yield is assumed to be a convex function of the level of inventory holdings, ( )t tc c INV=  

where ' 0 '' 0,c and c> >  reflecting the diminishing marginal productivity of inventory.3  

With the addition of the convenience yield, c, the equilibrium condition (1.6) expressed 

in logarithms becomes:  

                                                
1 This might reflect the direct utility benefit of holding and admiring your commodity inventory (plausible 
for gold, but perhaps not for tin) or the ‘option value’ of being able to consume your inventory before the 
end of the period in an emergency. 
2 Brennan (1958) generalizes the theory presented here to allow for a risk premium for those holding spot 
positions. In this case, the cost-of-carry function is concave at low and moderate inventory levels, but may 
become convex at high inventory levels. 
3 More recent work of Ramey (1989) argues that inventories of raw materials, intermediate goods, and final 
goods are all appropriately viewed as factors of production. The convenience yield can, in this context, be 
interpreted as the marginal productivity of inventory.   
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               ,[log log * ] * ( )* 0.t t T t t t tF P i T w T c INV T+ − − − − =                (1.7) 

From (1.7) it is clear that with the introduction of the convenience yield the future rate 

may lie above or below the spot rate (contango or backwardation).  Thus, the IAB may be 

positive or negative. Equation (1.7) is the cost-of-carry model that predicts a concave 

relationship between IAB and INV. When estimating the COC model below, the convex 

convenience yield relationship is captured using a log specification:4 

                                                        0 1 log( )t tc INVδ δ= + .                                   (1.8) 

Thus, the log form of the long-run equilibrium condition equals: 

                             , 0 1[log log ] log( ) 0t t T t t tF P i T INVδ δ+ − − − − = ,                 (1.9) 

or using the definition of IAB: 

                      0 1 log( ) 0t tIAB INVδ δ− − = ,   (1.10) 
 

where the warehousing and insurance cost (w) has been absorbed into the intercept.5  

 

 

 

                                                
4 Not surprisingly in light of Figures 1 and 2, a quadratic specification  ct = β0 + β1INVt +  β2(INVt)2

   also 
produces regression results with a statistically significant concave relationship between IAB and INV.   
5 Bresnahan and Suslow (1985), Bresnahan and Spiller (1986), Williams and Wright (1989, 1991), as well 
as Deaton and Laroque (1991), propose a second version of the theory of storage.  It does not rely on the 
concept of convenience yield, but it generates identical empirical propositions for the relation between the 
interest-adjusted basis (IAB) and the level of inventories. In this version IAB is an increasing, concave 
function of inventories even when the producers and marketers of commodities do not obtain benefits from 
holding inventories, because the probability of a stock out prior to the expiration of the futures contract 
varies inversely with inventories. Spot prices exceed forward prices when a stock out happens given the 
limitation to conduct intertemporal arbitrage transactions. In this context, the spot price has to increase in 
such a way to equilibrate supply and demand in the spot market. Therefore, when inventories decrease, the 
probability of a stock out rises, and IAB declines. For the purposes of this study, it does not matter which of 
the two versions of the theory is more likely since the models provide equivalent empirical propositions. As 
long as there is an increasing, concave relation between IAB and inventories, our empirical results are valid 
regardless of the structural model that generates this reduced form.  
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II   Data Description and Nonparametric Evidence on Hypotheses I and II   

 Our dataset includes monthly observations from the London Metals Exchange 

(LME) on spot and three-month futures prices for aluminum, aluminum alloy, copper, 

lead, nickel, tin, and zinc.6  We use 90-day future prices (which are quoted in U.S. 

dollars) and 90-day U.S. T-bill yields throughout.  So T =.25 years in all interest-adjusted 

basis calculations.  Prices for copper, aluminum, nickel and zinc cover the period 1988:11 

to 2008M07.  Prices for lead and tin are available from 1990:1.  Prices for the newer 

aluminum alloy contracts are available from 1993M12.  In addition, our dataset includes 

end-of-month data on LME warehouse inventories for each metal (measured in metric 

tons).  All series were obtained from the Haver Analytics USECON database.  Given our 

absence of data on warehousing and insurance costs, w is assumed to be constant over 

time (or, at least, to vary less than the convenience yield in response to changes in 

inventory levels). 

 Figure 2 and Figure 3 show two different graphical perspectives on the 

relationship between the IAB and LME inventory for copper.  The time plot in Figure 2 

suggests that the variance of the IAB is higher when inventory is low in the case of 

copper. A kernel fitted curve in the scatter plot of these same data in Figure 3 clearly 

shows evidence in support of Hypothesis I.  That is, there is a concave relationship 

between interest-adjusted basis and inventory. There is also strong visual support for 

Hypothesis II: the variance around the kernel fitted curve is much larger when inventory 

is low or IAB is negative – alternative indications of a ‘tight’ market situation. Along the 

                                                
6 For an overview of the LME and metal futures contracts, see Crowson (2005). We do not consider cobalt 
and molybdenum in our analysis because there is not enough price data for these commodities to conduct a 
proper econometric analysis given that futures contracts for them began to be traded in the LME in 
February 2010. More details regarding the lead market and its relation with the LME can be reviewed in 
Keen (2000). 
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axes of the scatter plot, nonparametric kernel density functions for the variables are also 

shown.     

Figure 2: Interest-Adjusted Basis vs. LME Inventory for Copper 
1988M11-2008M07 
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Figure 3: Interest-Adjusted Basis vs. LME Warehouse Inventory for Copper 
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 Figure 4 above shows kernel fit scatter plots for the other LME metals: aluminum 

(AL), aluminum alloy (ALA), lead (PB), nickel (NI), tin (SN) and zinc (ZN).  Apart from 

the aluminum alloy case, which admittedly looks rather odd, the graphs are similar to that 

for copper.  They suggest, for the most part, (1) concave positive relationships between 

the interest-adjusted basis and inventory, and (2) a variance of the IAB that falls as the 

level of inventory rises (or IAB is negative, which is Fama and French’s preferred proxy 

for market tightness). 

 
III   Time Series Features of the Data   

As a precursor to estimating various single and multiple-equation models to test 

the four hypotheses discussed in the introduction, it is necessary to (1) carry out unit root 

tests to assess the order of integration of each series in our dataset and (2) test for 

cointegration among the series.  Table I reports both augmented Dickey-Fuller (ADF) 

and Phillips-Perron unit root tests on the following series:  

          

,

,

log( ),
log( ),

log(1 ),
.25* ,
,

log( ),

t t t T

t t

t TB t

t t t t

t t t

t t

LF F
LP P
i i
IAB LF LP i
BASIS LF LP
LINV INV

+≡
≡

≡ +
≡ − −

= −
≡

   (1.11) 

 

for each of the seven LME metals. The 90-day T-bill rate is arguably I(0), at least during  

the low-inflation sample period under consideration.  Futures rates and spot rates are 

clearly I(1), which is consistent with earlier empirical studies.    
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Figure 4: The Interest Adjusted Basis and Inventory – Other LME Metals 
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Table I: Unit Root Tests 
Sample: 1988M11 (as available) - 2008M07 

 

Augmented Dickey-Fuller 
Unit Root Tests*  Phillips-Perron Unit 

Root Tests** 
Order of 

Integration 

Series t-stat. Prob. Lags Obs.  Prob. 
Band- 
width Obs.  

I -2.76 0.07 6 230  0.39 9 236 I(0) 
LP_AL -0.98 0.76 2 234  0.73 2 236 I(1) 
LP_ALA -1.16 0.69 1 174  0.64 6 175 I(1) 
LP_CU 0.17 0.97 2 234  0.98 1 236 I(1) 
LP_NI -1.39 0.59 2 234  0.69 4 236 I(1) 
LP_PB 0.02 0.96 2 220  0.93 3 222 I(1) 
LP_SN 1.35 1.00 1 221  1.00 2 222 I(1) 
LP_ZN -1.58 0.49 1 235  0.56 5 236 I(1) 
LF_AL -0.50 0.89 1 235  0.93 4 236 I(1) 
LF_ALA -0.67 0.85 1 174  0.86 5 175 I(1) 
LF_CU 0.64 0.99 13 223  1.00 6 236 I(1) 
LF_NI -1.69 0.44 4 232  0.53 2 236 I(1) 
LF_PB -0.02 0.95 13 209  0.78 5 222 I(1) 
LF_SN 4.20 1.00 3 219  1.00 8 222 I(1) 
LF_ZN -1.72 0.42 14 222  0.68 0 236 I(1) 
IAB_AL -4.80 0.00 2 234  0.00 10 236 I(0) 
IAB_ALA -4.88 0.00 0 175  0.00 7 175 I(0) 
IAB_CU -2.41 0.14 10 226  0.00 15 236 I(0)/I(1) 
IAB_NI -5.58 0.00 1 235  0.00 4 236 I(0) 
IAB_PB -3.52 0.01 3 219  0.00 3 222 I(0) 
IAB_SN -4.86 0.00 1 221  0.00 4 222 I(0) 
IAB_ZN -3.62 0.01 3 233  0.00 2 236 I(0) 
BASIS_AL -5.21 0.00 2 234  0.00 9 236 I(0) 
BASIS_ALA -4.28 0.00 0 175  0.00 7 175 I(0) 
BASIS_CU -2.37 0.15 10 226  0.00 14 236 I(0)/I(1) 
BASIS_NI -5.84 0.00 1 235  0.00 4 236 I(0) 
BASIS_PB -5.99 0.00 0 222  0.00 3 222 I(0) 
BASIS_SN -4.73 0.00 1 221  0.00 5 222 I(0) 
BASIS_ZN -3.93 0.00 3 233  0.00 0 236 I(0) 
LINV_AL -3.00 0.04 14 222  0.26 7 236 I(0)/I(1) 
LINV_ALA -2.52 0.11 1 186  0.00 8 187 I(0)/I(1) 
LINV_CU -2.62 0.09 12 224  0.22 4 236 I(1) 
LINV_NI -1.99 0.29 2 234  0.10 7 236 I(1) 
LINV_PB -3.06 0.03 14 222  0.35 4 236 I(0)/I(1) 
LINV_SN -2.92 0.04 1 229  0.00 10 230 I(0) 
LINV_ZN -2.83 0.06 14 222  0.09 8 236 I(1) 
* Lag Selection Criterion: Akaike Information Criterion.  
**Newey-West automatic bandwidth selection and Bartlett kernel. 
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 The null hypothesis of a unit root in the BASIS is clearly rejected for six of the 

seven metals, with some ambiguity in the case of copper.  The same results hold for the 

interest-adjusted basis (IAB).  If the short-term interest rate is indeed stationary, these 

results imply that LF and LP are cointegrated with cointegrating coefficients (1,-1).  If the 

short-term interest rate is nonstationary, the stationarity of IAB implies that LF, LP and i 

are cointegrated with the cointegrating coefficients (1,-1, -0.25).  Finally, results for the 

LME inventory series (LINV) series vary, being either I(0) or I(1), depending on the 

metal and particular unit root tests considered.  Financial time series such the log 

differences of the futures and spot rates (ΔLF, ΔLP) and interest rates are typically 

characterized by time-varying volatility.  Figure 5 for copper is representative of this 

feature in our dataset. 

 
Figure 5: Monthly Percentage Changes in 90-day Futures  

and Spot Prices for LME Copper 
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 The validity of the COC model implies that there should be a long-run 

equilibrium relationship between the four series (LF, LP, i, LINV), regardless of whether 

they are individually I(0) or I(1).  We test this hypothesis for each of the seven LME 

metals by carrying out the Phillips and Ouliaris (1990) cointegration test.  This test is 

similar to the Engle-Granger two-step approach for cointegration in that it performs a unit 

root test on the OLS residuals from the following regression:  

                          1 2 3 4t t t t tLF LP i LINFVδ δ δ δ ε= + + + + .               (1.12) 
 
Unlike the Engle-Granger test, the Phillips-Ouliaris cointegration test uses a Newey-West 

robust estimator for the error covariance matrix, which is desirable given the serial 

correlation and time-varying volatility of our series as well as the residuals in equations 

like (1.12).7  Table II reports the Phillips-Ouliaris cointegration results, which uniformly 

and strongly reject the null hypothesis of no cointegration (the Engle-Granger 

cointegration produces similar results.) Table III repeats the Phillips-Ouliaris 

cointegration test considering equation (1.12), but restricts the cointegrating relationship 

to that implied by the cost-of-carry model where:   

                                      0 1 2: 1 0.25H andδ δ= − = − .                    (1.13) 

The restricted cointegration test amounts to carrying out the Phillips-Ouliaris test on 

IAB=LF-LP-.25*i and LINV.  Again the results uniformly and strongly reject the no 

cointegration null hypothesis in favor of cointegration.8  With the COC restriction in 

                                                
7 In this sense, the Phillips-Ouliaris test is robust to heteroskedasticity and serial correlation. Another good 
feature of the test is that in large samples it has superior power properties than the Engle-Granger ADF test. 
In addition to the Phillips-Oularius cointegration tests reported here, we carried out Johansen cointegration 
tests.  These test results also point strongly towards the presence of cointegration. See Appendix for details.   
8 Note that if the nominal interest rate and the log of inventories are I(0) series, then the finding in Table 1 
that the basis is stationary is sufficient to produce a stationary relationship among the four series (LF,LP, i, 
LINV).  If LINV is I(1), on the other hand,  the finding of cointegration among the four series is consistent 
with the COC model, but at odds with the basis and IAB being stationary, ignoring the influence of LINV. 
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(1.13), these test results are consistent with the cost-of-carry model for the seven LME 

metals (Hypothesis I).  

 

Table II: Phillips-Ouliaris Cointegration Tests 
for the LME Metals 

H0: No Cointegration Involving (LF, LP, i, LINV) 
 

Metal 
Tau 
Stat. p-value 

   
Copper -6.623 0.000 
Aluminum -7.182 0.000 
Alum. Alloy -5.727 0.000 
Lead -8.823 0.000 
Nickel -7.579 0.000 
Tin -5.642 0.000 
Zinc -8.085 0.000 
      

                                             
 

 
Table III: Phillips-Ouliaris Cointegration Test for the LME Metals 

H0: No Cointegration Involving (IAB, LINV) 
This null hypothesis imposes the COC restrictions in (1.13) 

 

Metal 
Tau 
Stat. p-value 

   
Copper -6.464 0.000 
Aluminum -7.229 0.000 
Alum. Alloy -5.720 0.000 
Lead -8.933 0.000 
Nickel -6.798 0.000 
Tin -5.672 0.000 
Zinc -7.540 0.000 
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IV   Estimating the COC Model with a GARCH Error Process    

 Unlike stock prices, spot and futures rates for metals, as well as their basis and 

IAB, often exhibit significant first-order serial correlation, even after log-differencing to 

remove unit roots.  Therefore we allow for flexible adjustment dynamics toward the COC 

equilibrium condition in (1.10) by estimating an autoregressive distributed lag or 

ADL(1,2) model:9 

       1 2 1 3 1 4 2log logt t t t tIAB IAB LINV LINVβ β β β ε− − −= + + + + . (1.14) 
 

It is straightforward to show that this ADL(1,2) specification can be rewritten in an 

equivalent error-correction form: 1 1 0 1 1 1 1log( )] log[t t t t tIAB IAB INV LINVγ δ δ γ ε− − −Δ = − − + Δ +  

To capture the time-varying volatility in the error process in (1.14), we estimate the ADL 

model with a GARCH error process10 that includes the Fama-French market tightness 

dummy variable Dt:  

                   2 2 2
0 1 1 1 1t t t t tD uσ α α ε λσ δ− −= + + + + .              (1.15) 

 

The innovations in the error process are assumed to have a Student-t distribution, thereby 

allowing for the ‘fat tails’ that are a feature of many financial time series. GARCH 

specifications with three alternative measures of market tightness are also considered. 

These include a Fama-French-like dummy on the raw (rather than interest-adjusted) 

basis, and either the series LINV or IAB (rather than a dummy based on its sign): 
                                                
9 Higher-order terms for IAB and LINV were not statistically significant and the correlograms for the 
residuals showed no evidence of remaining serial correlation.   
 
10 Evans and Guthrie (2008) show that the observation of serial correlation in commodity prices and 
GARCH characteristics in the variance of these prices is consistent with a competitive storage model of 
commodity prices featuring frictions (i.e., a cost is incurred each time a unit of the commodity is moved 
into or out of storage) which introduce an element of irreversibility into storage decisions. In their model 
the convenience yield is interpreted as the amount by which the expected return from holding a timing real 
option embedded in each unit of the stored commodity exceeds the opportunity cost of maintaining stocks. 
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2 2 2
0 1 1 1 1

2 2 2
0 1 1 1 1 .

t t t t t

t t t t t

LINV u
or

IAB u

σ α α ε λσ δ

σ α α ε λσ δ

− −

− −

= + + + +

= + + + +

                                  (1.16) 

 

All four GARCH specifications produce empirical results that confirm Hypothesis 

1 and strongly support Hypothesis 2.  Table IV summarizes the ADL(1,2)-GARCH(1,1) 

results for seven LME metals by reporting the GARCH specifications that minimize the 

Akaike information criterion.11   

 

Table IV: ADL(1,2)-GARCH(1,1) Models for Testing Hypotheses I and II 

Dependent Variable: 

Sample: 

 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value
Mean Equation:
C -0.030 0.001 *** -0.011 0.080 * -0.015 0.082 * 0.000 0.249
IAB(-1) 0.826 0.000 *** 0.577 0.000 *** 0.676 0.000 *** 0.868 0.000 ***
LINV(-1) 0.018 0.000 *** 0.018 0.000 *** 0.018 0.000 *** 0.004 0.000 ***
LINV(-2) -0.016 0.000 *** -0.017 0.000 *** -0.016 0.000 *** -0.004 0.000 ***

Variance Equation:
C 0.000 0.257  0.000 0.000 *** 0.000 0.000 *** 0.000 0.018 **
RESID(-1)^2 0.406 0.000 *** 0.216 0.001 *** 0.242 0.014 ** 0.516 0.000 ***
GARCH(-1) 0.551 0.000 *** -- -- -- -- 0.216 0.000 ***
Dummy(IAB<0) 0.000 0.020 ** 0.000 0.000 *** 0.000 0.021 ** -- --
Dummy(BASIS<0) -- -- -- -- 0.000 0.000 ***

Regression Fit
R-squared 0.812 0.581 0.594 0.790
Adjusted R-squared 0.810 0.575 0.586 0.787
Akaike info criterion -7.070 -7.790 -8.103 -7.878
Schwarz criterion -6.937 -7.672 -7.958 -7.745
Durbin-Watson stat 1.740 1.371 1.707 1.724
Wald Tests
Wald1: β3=β4=0 47.612 0.000 *** 29.534 0.000 *** 31.224 0.000 *** 60.690 0.000 ***
Wald2: β3+β4=0 10.316 0.001 *** 5.189 0.023 ** 4.436 0.035 ** 0.110 0.741

IAB_CU (Copper)

1989M01 - 2008M07 1989M01 - 2008M07 1994M01 - 2008M07 1989M01 - 2008M07

IAB_AL (Aluminum) IAB_ALA 
(Aluminum Alloy) IAB_NI (Nickel)

 
 
*** Significance at 99% level, ** significance at 95% level, * significance at 90% level. Continues… 

                                                
11 Both criteria always choose the same model when the number of estimated parameters is the same in all 
specifications, as is the case here.)  
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Table IV: ADL(1,2)-GARCH(1,1) Models for Testing Hypotheses I and II 

Dependent Variable: 

Sample: 1990M02 - 2008M07

 Coefficient p-value Coefficient p-value Coefficient p-value
Mean Equation:
C -0.020 0.096 * -0.010 0.010 *** -0.010 0.061 *
IAB(-1) 0.821 0.000 *** 0.808 0.000 *** 0.739 0.000 ***
LINV(-1) 0.026 0.000 *** 0.007 0.000 *** 0.023 0.000 ***
LINV(-2) -0.024 0.000 *** -0.006 0.000 *** -0.022 0.000 ***

Variance Equation:
C 0.000 0.000 *** 0.000 0.098 * 0.000 0.001 ***
RESID(-1)^2 0.330 0.017 ** 0.406 0.015 ** 0.480 0.014 **
GARCH(-1) -- -- 0.230 0.035 ** -- --
Dummy(IAB<0) -- -- 0.000 0.000 *** -- --
Dummy(BASIS<0) -- -- -- -- 0.001 0.007 ***

Regression Fit
R-squared 0.565 0.743 0.627
Adjusted R-squared 0.559 0.740 0.622
Akaike info criterion -6.483 -8.533 -7.370
Schwarz criterion -6.361 -8.395 -7.252
Durbin-Watson stat 2.393 1.751 1.810
Wald Tests
Wald1: β3=β4=0 44.454 0.000 *** 129.031 0.000 *** 30.885 0.000 ***
Wald2: β3+β4=0 3.328 0.068 * 6.923 0.009 *** 5.096 0.024 **

1990M02 - 2008M07 1989M01 - 2008M07

IAB_PB (Lead) IAB_SN (Tin)  IAB_ZN (Zinc)

 

               H1: The Interest-Adjusted Basis (IAB) is a positive concave function of the level of  
                    inventories. H2: When the market is tight, the IAB is more variable.  
                

   *** Significance at 99%, ** significance at 95%, * significance at 90%.  
                 Source: Authors’ calculations. 
 

 The estimated model for copper in the first column of Table IV provides strong 

support for the cost-of-carry model (Hypothesis I).  See the estimated coefficients for the 

‘mean equation,’ which show that the interest-adjusted basis is a concave function of the 

level of inventory (in both the short run and the long run).  The coefficients on the first 

and second lags of LINV are individually highly significant.  We also carried out two 

Wald tests (Wald1 and Wald2, respectively) to test the following null hypotheses on the 

coefficients on LINV and LINVt-1 in (1.14): 
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The Wald test statistics are reported at the bottom of Table IV.  Both indicate strong 

rejections, as would be expected from the COC model. 

Next, consider the GARCH specification in the estimated ADL-GARCH model 

for copper, which is shown under ‘Variance Equation’ in Table IV.  The best 

specification based on the model selection criteria used the Fama-French dummy as the 

indicator of market tightness.  The coefficient on the dummy is positive and highly 

significant, providing strong support for Hypothesis II (that the conditional variance of 

IAB is higher when the market is tight).   

The remaining columns in Table IV show that the findings for all seven metals are 

qualitatively similar to those for copper (and this holds regardless of which measure of 

market tightness is used in the GARCH specification).  The only minor difference is for 

nickel where Wald1 is strongly rejected, but Wald 2 cannot be rejected (p=0.741).   

In summary, given (i) the graphical evidence in the scatter plots in Figures 3 and 

4, (ii) the econometric evidence based on the Phillips-Ouliaris cointegration tests and (iii) 

the estimated ADL(1,2)-GARCH models in Table IV we conclude that the two 

hypotheses involving the interest-adjusted basis (Hypotheses 1 and 2) are strongly 

supported by the data for the seven LME metals.  That is, (1) there is a strong positive, 

concave relationship between IAB and inventory, as the COC model predicts, and (2) the 

conditional variance of IAB is much higher when the market is ‘tight.’  The latter results 

are robust to the alternative proxies for market tightness. 
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V   A VEC-MGARCH Model of Spot and Futures Prices  
 

Up to this point, we have only examined the interest-adjusted basis, not the 

separate movements of (logs of) futures and spot prices of LME metals, LF and LP. 

Following Ng and Pirrong (1994)12 and Benavides (2010), this section turns to the joint 

time series behavior of LF and LP, including their time-varying covariance structure.   

Ng and Pirrong use a two-step approach to estimate a bivariate error correction 

model with an M-GARCH error process for spot and forward prices. They consider four 

industrial metals traded on the LME (aluminum, copper, lead, and zinc) plus silver, 

whose characteristics as a precious metal are perhaps more important than its industrial 

demand. They use daily data from September 1,1986 to September 15, 1992 (except for 

the aluminum data which began I august 27, 1987).  They use weekly warehousing fees 

in 38 LME warehouses in 12 countries to get a proxy for warehousing costs.  On the 

other hand, they do not use LME inventory data as a proxy for market tightness, relying 

instead on the adjusted spread. In contrast, we use LME inventory data as a key source of 

information in our estimation. 13  Also, we estimate the mean and variance-covariance 

equations simultaneously rather than using the two-step approach in Ng and Pirrong.  

Like Ng and Pirrong, our methodology properly handles the issues of the non-stationary 

behavior of time series price data that may generate spurious results during the statistical 

testing of the FFS hypotheses, as well as the problem of time-varying volatilities also 

                                                
 
13  Ng and Pirrong (1994) begin by summarizing two variants of the theory of storage (or cost-of-carry 
model) that are observationally equivalent for the hypotheses that they test. The first variant relates the 
interest-and-storage-adjusted basis, which they call the ‘adjusted spread,’ to the convenience yield.   The 
second is assumed to be an increasing concave function of the level of inventory.  The second variant does 
not rely on the construct of a convenience yield.  Instead it assumes that the probability of an inventory 
stock out increases as the level of inventories falls, causing the market risk premium associated with stock 
outs to rise. They use the adjusted spread as a proxy. 
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observed in commodity prices that may affect the efficiency of our hypothesis-testing 

exercise.   

Our ultimate objective is to test generalizations of Hypothesis III (the Samuelson 

Hypothesis), namely the conditional variance of future prices is less than the conditional 

variance of spot prices, and Hypothesis IV (the Fama-French Hypothesis) which states 

that when the market is tight, the conditional correlation is lower than when market is 

not tight.  In the later case, the conditional correlation is near unity. 

 Our approach is to estimate the following bivariate vector error correction model 

(VEC) for (LF, LP), which embodies the long-run equilibrium relationship among the 

four series in (1.12) and the time-varying volatility of the series LF and LP:  
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     (1.18) 

 

The error covariance matrix exhibits time-varying volatility: 

 

                                               11 12
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Var H

h he
⎡ ⎤ ⎡ ⎤
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,                                       (1.19) 

 

It is assumed to follow an MGARCH error process with the diagonal VECH(1,1) form 

proposed in Bollerslev, Engle, and Wooldridge (1988).  We add the Fama-French market 
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tightness dummy Dt to the bivariate MGARCH specification to capture the effects of 

market tightness on the conditional variances of LF and LP, as well as their covariance: 

 

                       
2

11 11 11 1 1 11 11 1 11

12 12 1 1 2 1 12 12 1 12
2

22 22 22 2 1 22 22 1 22 .

t t t t

t t t t t

t t t t

h M A B h E D
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h M A B h E D

ε
ε ε

ε

− −

− − −

− −

= + + +
= + +

= + + +

                     (1.20) 

 

Mij, Aij, Bij, and Eij are the MGARCH parameters to be estimated.  In order to guarantee 

the positive definiteness of the variance-covariance matrix Ht, we will employ a diagonal 

parameterization for constant matrix M and a rank one14 parameterization for the matrices 

A, B and E – i.e. the ARCH, GARCH, and dummy terms in (1.20)–  following Ding and 

Engle (2001).  The VEC-MGARCH model with VECH(1,1) structure is estimated using 

a maximum likelihood procedure that assumes the errors terms have a multivariate 

Student-t distribution.15, 16  Table V shows the estimation results for the VEC(1)-

MGARCH(1,1)17 model for the LME metals. Focus first on the estimated MGARCH 

processes. Note that the MGARCH specification captures well the time-varying volatility 

in the ΔLF and ΔLP series, as well as the time-varying covariance effect.18  

                                                
14 The rank one parameterization is consistent with a financial single-factor model. It can be shown that the 
variances and covariance of two assets X1 and X2 are the following: cov(X1, X2) = β1β2σ2

M, var(X1) = β1
2σ2

M 
and var(X2) = β2

2σ2
M where βi is the beta coefficient of asset “i” and σ2

M is the variance of the market index. 
In matrix notation we get: 
 

[ ]
2

1 1 2 21 1 2
1 2 2

2 2 1 2 2

var .M M

X
X

β β β ββ β σ σ
β β β β

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
15 See Laurent, Bauwens and Rombouts (2006) for further details regarding the MGARCH specification. 
16 To identify the various constant terms in the VEC, we impose the restriction that LF and LP have the 
same stochastic trend: 

0 0 .s fα α=  
17 The Schwarz criterion applied to the unrestricted VAR with LF and LP chose two lags. Rewriting the 
VAR in the canonical or VECM form reduces the lag length by one.  
18 We do not analyze the correlation between different commodity markets and market indices such as the 
LME Base Metals Index. Interested readers on the subject can review Watkins and McLeer (2005).  
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Table V: Results of the Estimation of the VEC-MGARCH Model 

Long-run COC relation z-stat. z-stat. z-stat. z-stat.

LPt-1 -1.000 constr. -1.000 const -1.000 constr. -1.000  constr.
it-1 -0.250 constr. -0.250 const -0.250 constr. -0.250  constr.
LINVt-1 (δ1) -0.015 *** -9.478 0.020  0.464 -0.020 *** -7.366 -0.005 ** -2.444

Constant in CE (δ0) 0.195 *** 9.495 -0.198  -0.439 0.220 *** 6.688 0.052 ** 2.008

Short-run Forward Dynamics z-stat. z-stat. z-stat. z-stat.
Speed of Adjustment (α1f ) 0.229  1.517 0.204  0.823 -0.499 *** -3.268 0.492 *** 4.767
ΔLFt-1 0.659 ** 2.529 0.733  1.626 0.202  0.965 -0.011  -0.073

ΔLPt-1 -0.299  -1.241 -0.435  -0.975 -0.064  -0.320 0.196  1.495
Δit-1 1.907 * 1.713 -0.053  -0.028 -0.158  -0.124 2.668 *** 2.825
ΔINVt-1 -0.046 ** -2.176 -0.007  -0.341 -0.118 *** -4.664 -0.090 *** -3.901

Short-run Spot Dynamics z-stat. z-stat. z-stat. z-stat.
Speed of Adjustment (α1s ) 0.484 *** 3.149 0.225  0.822 -0.298 * -1.741 0.712 *** 6.455
ΔLFt-1 0.581 ** 2.150 0.777  1.625 0.298  1.255 0.023  0.136
ΔLPt-1 -0.217  -0.861 -0.481  -1.010 -0.143  -0.623 0.167  1.126

Δit-1 2.060 * 1.792 -0.762  -0.386 0.030  0.022 2.653 *** 2.756
ΔINVt-1 -0.060 *** -2.901 -0.014  -0.718 -0.140 *** -5.087 -0.109 *** -4.486
Constant (α0f  = α0s) 0.005 ** 1.992 0.013 ** 2.174 -0.004  -1.413 0.004 ** 2.555

MGARCH Coefficients Estimates z-stat. Estimates z-stat. Estimates z-stat. Estimates z-stat.
M(1,1) 0.000001  0.110 0.000112 *** 2.744 -0.000005  -0.830 0.000004  1.009
M(2,2) 0.000000  -0.049 -0.000116 *** -2.711 0.000002  0.243 -0.000005  -0.940
A1(1,1) 0.256314 *** 3.947 0.430672 ** 2.427 0.247796 ** 2.037 0.535763 *** 4.681
A1(1,2) 0.253614 *** 3.964 0.453559 ** 2.440 0.270907 ** 2.053 0.561002 *** 4.696
A1(2,2) 0.250942 *** 3.964 0.477661 ** 2.450 0.296174 ** 2.069 0.587430 *** 4.693
B1(1,1) 0.767500 *** 20.058 0.628903 *** 19.501 0.822093 *** 93.539 0.623155 *** 19.426
B1(1,2) 0.771741 *** 20.785 0.641422 *** 21.411 0.811179 *** 130.695 0.615183 *** 19.239
B1(2,2) 0.776005 *** 21.383 0.654191 *** 23.468 0.800411 *** 160.032 0.607312 *** 18.797
E1(1,1) 0.000257 ** 2.219 0.002233 ** 2.198 0.000743 * 1.729 0.000152  1.127
E1(1,2) 0.000234 ** 2.119 0.002269 ** 2.200 0.000751 * 1.691 0.000095  0.847
E1(2,2) 0.000213 ** 2.019 0.002305 ** 2.198 0.000760 * 1.647 0.000059  0.674

Adj. R2 Forward Equation
Adj. R2 Spot Equation
Degrees of Freedom (t-Student)
Sample 
Observations

COPPER

Mean Equation

MGARCH Equations

Estimates

Estimates

Estimates

0.103
0.146
4.535

1989M01 - 2008M07
5.219

1989M01 2008M07

0.111

NICKEL

Mean Equation

Estimates

Estimates

Estimates

MGARCH Equations

0.083
0.088 0.174
4.734

1989M01 - 2008M07

LEAD

Mean Equation

Estimates

Estimates

Estimates

MGARCH Equations

0.100

2.833
1990M03 - 2008M07

ZINC

Mean Equation

Estimates

Estimates

Estimates

MGARCH Equations

0.112

235 235 221 235

 
 
*** significance at 99% level, ** significance at 95%, * significance at 90%, const: constrained parameter 
Continues… 
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Table V: Results of the Estimation of the VEC-MGARCH Model 

Long-run COC relation z-stat. z-stat. z-stat.

LPt-1 -1.000 constr. -1.000 constr. -1.000 constr.
it-1 -0.250 constr. -0.250 constr. -0.250 constr.
LINVt-1 (δ1) -0.005 *** -3.933 -0.009 *** -5.924 -0.004  -1.249

Constant in CE (δ0) 0.066 *** 3.551 0.093 *** 5.974 0.039  0.989

Short-run Forward Dynamics z-stat. z-stat. z-stat.
Speed of Adjustment (α1f ) 0.558 *** 2.703 -0.517  -1.334 0.185  0.965
ΔLFt-1 0.414  1.300 0.970 ** 2.165 0.744 *** 2.946

ΔLPt-1 -0.199  -0.650 -0.776 * -1.778 -0.485 ** -1.970
Δit-1 1.476  1.609 -0.226  -0.203 0.314  0.420
ΔINVt-1 -0.031  -1.433 -0.057 *** -3.130 -0.088 *** -5.380

Short-run Spot Dynamics z-stat. z-stat. z-stat.
Speed of Adjustment (α1s ) 0.937 *** 3.891 -0.293  -0.724 0.417 * 1.842
ΔLFt-1 0.318  0.859 0.955 ** 1.990 0.737 *** 2.638
ΔLPt-1 -0.107  -0.295 -0.765  -1.630 -0.471 * -1.704

Δit-1 1.546  1.607 -0.281  -0.242 0.180  0.227
ΔINVt-1 -0.049 ** -2.029 -0.065 *** -3.528 -0.100 *** -5.769
Constant (α0f  = α0s) -0.001  -0.503 -0.003  -1.207 0.002  0.975

MGARCH Coefficients Estimates z-stat. Estimates z-stat. Estimates z-stat.
M(1,1) -0.000007  -1.252 0.000001  0.452 0.000002  0.419
M(2,2) 0.000007  1.234 -0.000001  -0.318 -0.000002  -0.297
A1(1,1) 0.437048 *** 2.892 0.418563 ** 2.298 0.428379 *** 3.372
A1(1,2) 0.447288 *** 2.912 0.422175 ** 2.310 0.424827 *** 3.395
A1(2,2) 0.457767 *** 2.927 0.425818 ** 2.321 0.421304 *** 3.397
B1(1,1) 0.661199 *** 15.873 0.710734 *** 14.665 0.668204 *** 14.430
B1(1,2) 0.644917 *** 15.378 0.706370 *** 14.692 0.670255 *** 15.105
B1(2,2) 0.629036 *** 14.788 0.702033 *** 14.680 0.672313 *** 15.405
E1(1,1) 0.000889 ** 2.239 0.000315 * 1.870 0.000033  0.652
E1(1,2) 0.001086 ** 2.314 0.000346 * 1.892 0.000068  0.864
E1(2,2) 0.001327 ** 2.389 0.000381 * 1.913 0.000141  1.250

Adj. R2 Forward Equation
Adj. R2 Spot Equation
Degrees of Freedom (t-Student)
Sample 
Observations

3.768
1989M01 - 2008M07

TIN

Mean Equation

Estimates

Estimates

Estimates

MGARCH Equations

0.080
0.086

ALUMINUM

Mean Equation

Estimates

Estimates

Estimates

MGARCH Equations

0.088
0.136

4.689

Estimates

MGARCH Equations

0.154
0.166

ALUMINUM ALLOY

Mean Equation

Estimates

Estimates

3.070
1994M02 - 2008M07

235 221 174
1990M03 2008M07

 
        
       *** significance at 99%, ** significance at 95%, * significance at 90% 
         Source: Authors’ estimations.   

 

 Moreover, the MGARCH coefficients on the Fama-French market tightness 

dummy E(1,1) and E(2,2) are significant in the conditional variance equations for ΔLF 
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and ΔLP, as well as their conditional covariance equation (see E(1,2)) in the cases of 

copper, aluminum, nickel, lead and tin. We find no evidence regarding the effect of the 

market tightness indicator in the cases of zinc and aluminum alloy in our multivariate 

analysis. See the estimated Eij coefficients in Table V. 

We can now test our generalization of the Samuelson hypothesis (Hypothesis III) 

that the conditional variance of the spot price of LME copper exceeds the conditional 

variance of the futures price. Figure 6 shows time plots of the estimated conditional 

variances for the spot and future copper prices as an example. The lower panel shows the 

ratio of the conditional variance of the spot rate to the conditional variance of the futures 

prices. The Samuelson hypothesis holds when this ratio exceeds one.   

 We observe that the conditional variance ratio is greater than one for 74% of the 

sample.  Is 0.74 statistically different from 0.50?  As a formal test of Hypothesis III, we 

construct a bivariate variable D_SAMt that equals one when conditional variance ratio > 1 

and zero otherwise.  The expected value of this dummy E[D_SAMt] is the proportion of 

the time that the Samuelson hypothesis holds.  We then test the null hypothesis H0: 

E[D_SAMt] ≤0.50, which indicates a 50-50 chance of validating/rejecting Samuelson 

hypothesis. Under the null, there is no statistical support for Samuelson hypothesis. The 

alternative hypothesis E[D_SAMt] > 0.50 implies evidence favoring Samuelson 

hypothesis.  The higher is E[D_SAMt] - 0.50, the stronger is the support for the 

Samuelson hypothesis. We construct a one-tailed t-statistic based on the difference 

between the actual proportion, S%, and the 50% proportion to carry out the hypothesis 

test. The results of this test for the seven LME metals are shown in Table VI.  
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Figure 6: Conditional Spot and Future Variances in the Case of Copper 
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 We observe that the proportion of the sample in which the conditional variance 

ratio is greater than one is over 75% in the case of copper and aluminum alloy, whereas it 

is greater than 85% in the cases of aluminum, lead, nickel, tin and nickel. The t-statistic is 

highly significant in all cases. These results strongly validate the generalized Samuelson 
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Hypothesis.19 The conditional variances of spot prices are higher than the conditional 

variances of the future prices well over 75% of the time in the case of all LME metals.  

 

Table VI: Tests of Samuelson Hypothesis (III) 
(H0: S% = 0.5 vs. H1: S% > 0.5) 

 

Metal 
S% of sample in 

which the 
hypothesis holds 

Obs. z-stat. One-tail    
p-value 

     
Copper 74.0% 235 8.39 0.00 
Aluminum 86.0% 235 15.83 0.00 
Aluminum Alloy 76.4% 174 8.19 0.00 
Lead 95.0% 221 30.71 0.00 
Nickel 88.9% 235 17.98 0.00 
Tin 87.8% 221 17.11 0.00 
Zinc 86.4% 235 16.23 0.00 
          

 

 Regarding Fama-French Hypothesis IV, Figure 7 shows some graphical evidence. 

It is possible to observe that in the case of copper when the market was tight in the last 

decades (meaning a decrease in LME copper inventories), the conditional correlation 

between the futures and spot prices decreased. Figure 7 identifies three periods of market 

tightness (shaded areas). The first episode at the beginning of the 1990s coincides with 

the Persian Gulf War in Kuwait. The 1995-8 period included the Mexican debt crisis of 

1994-1995, the Asian crisis of 1997, and the Russian banking crisis of 1998. Finally, the 

                                                
19 Our results contrast with those found by Evans and Guthrie (2008) using simulation experiments. Evans 
and Guthrie reject Samuelson’s hypothesis using univariate GARCH (1,1) models for simulated spot and 
futures prices. The validation of the Samuelson’s hypothesis in our case supports the idea that market 
frictions are not affecting much the dynamics of LME metal prices. Evans and Guthrie would suggest 
otherwise. 
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third episode occurred between 2004 and 2006, which Radetzki (2006) views as the start 

of the most recent commodity boom.  

 

Figure 7: Conditional Correlation of Spot and Futures Prices 
vs. Log(Inventories): LME Copper 
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 To test the generalized Fama-French Hypothesis IV, we proceeded as follows: (1) 

re-estimate the VEC-MGARCH model in (1.20) without including the market tightness 

dummy; (2) calculate the conditional correlation, denoted ( )FP tσ , using the estimated 

conditional variances and covariance; (3) estimate an appropriately constrained Tobit 

regression relating conditional correlation ( )FP tσ to the market tightness dummy:  

                                            ( )FP t tt D uσ α β= + + .                                         (1.21) 
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where the left-hand side variable is constrained (censored) to the interval [-1, +1].  Using 

(1.21), we test the null hypothesis that the market tightness dummy has no negative 

impact on the conditional correlation between ΔLF and ΔLP: 0 : 0H β ≥ .  Hypothesis IV 

predicts that 0β <  in (1.21) and that 1α ≈ , indicating that the correlation is almost 

perfect when Dt = 0. Table VII shows the results of testing the null hypotheses from the 

Tobit regression for the seven LME metals:   

 

Table VII: Tests of Fama-French Hypothesis (IV) 
Tobit Regressions 

 

Metal α t-stat. 
H0: α = 1   β t-stat. 

H0: β ≥ 0   

       
Copper 0.985 -6.358 *** -0.020 -4.741 *** 

Aluminum 0.985 -6.855 *** -0.013 -3.269 *** 

Aluminum Alloy 0.969 -4.688 *** 0.006 0.669  
Lead 0.974 -10.074 *** -0.010 -1.410  
Nickel 0.999 -5.472 *** -0.014 -8.045 *** 

Tin 0.996 -6.736 *** -0.004 -5.593 *** 

Zinc 0.981 -4.843 *** -0.022 -2.848 *** 

              
 

 

 We observe that the estimated conditional correlations when the market is not 

tight (i.e., α) are very high, but given their very small standard errors are statistically 

different from one. The average for the seven LME metals is 0.984. This suggests that the 

spot and future LME prices are ‘almost perfectly correlated’ when the market is not tight, 

as Fama and French predict. The Fama-French dummy (i.e., β) has the negative sign that 

Fama and French predict in six cases, and it is statistically significant at 99% level for 
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copper, aluminum, nickel, tin and zinc. The dummy is insignificant in the cases of 

aluminum alloy and lead. The magnitude of the market tightness effect on conditional 

correlation, however, is numerically small.  On average, it equals -0.014 (excluding 

aluminum alloy, which has a positive coefficient).  As Figure 7 suggests, the conditional 

correlations are typically very high whether or not the market is tight.  In this sense, the 

empirical relevance of the generalized Fama-French hypothesis is perhaps modest.   

 

VI   Conclusions 

 This paper has presented interesting tests of the four Fama-French-Samuelson 

hypotheses outlined in the Introduction. We have found strong nonparametric and 

parametric empirical evidence to support the cost-of-carry model (Hypothesis I), which 

predicts a concave long-run equilibrium relation between the interest-adjusted basis and 

inventory.  This suggests that inventory responses distribute the effects of demand and 

supply shocks between spot and futures LME metal prices. There is also very compelling 

evidence to suggest that the volatility of the IAB is higher when the market is tight 

(Hypothesis II).  We provide an empirical specification that allows us to test both of these 

hypotheses, namely an ADL model with a GARCH error process.  

 Percentage changes in futures prices and spot prices (as opposed to the basis or 

percentage gap between them) are much more difficult to explain.  We estimate a vector-

error correction model for logs of futures and spot rates with a multivariate GARCH error 

process. This model allows us to test a generalized version of the Samuelson hypothesis, 

namely the conditional variance of the spot rate is higher that the conditional variance of 

the futures price.  The empirical evidence for seven LME-traded metals is strongly 
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supportive of this hypothesis.  Turning to the Fama and French refinement of the 

Samuelson hypothesis, however, our results are more mixed. We find that the conditional 

correlation between percentage changes in futures and spot prices is very high (well over 

0.9) regardless of whether markets are tight or not.  There was only a small reduction in 

this correlation when markets were tight, with the correlation typically remaining in 

exceed of 0.9.  Thus, for the LME metals, at least, the Fama-French hypothesis does not 

seem to be particularly important.   

The testing methods developed here can be applied in a straightforward way to 

other primary commodities.  Future research will determine the extent to which our 

empirical findings carry over to them as well.  

 

 

 

 

 

 

 

 

 

 



 33 

VII   References 

 
Benavides, Guillermo, 2010, The Theory of Storage and Price Dynamics of Agricultural 
Commodity Futures: The Case of Corn and Wheat, Ensayos, 29: 1-22. 
 
Bollerslev, Tim, Engle, Robert, and Jeffrey Wooldridge, 1988, A capital asset pricing 
model with time-varying covariances, Journal of Political Economy, 96: 116-131. 
 
Brennan, Michael (1958), The supply of storage, American Economic Review, 48: 50-72. 
 
Bresnahan, Timothy and Pablo Spiller, 1986. Futures market backwardation under risk 
neutrality, Economic Enquiry, 24: 429-441. 
 
Bresnahan, Timothy and Valerie Suslow 1985, Inventories as an asset: The volatility of 
copper prices. International Economic Review, 26: 409-424. 
 
Deaton, Angus and Guy Laroque, 1991, The behavior of commodity prices, Review of 
Economic Studies, 59: 1-23. 
 
Crowson, Phillip, 2005, Managing metals price risk with the London Metal Exchange 
(London: London Metal Exchange).  
 
Ding, Zhuanxin and Robert Engle, 2001, Large scale conditional covariance matrix 
modeling, estimation and testing, Academia Economic Paper, 29: 157–184. 
 
Fama, Eugene and Kenneth French, 1988, Business cycles and the behavior of metals 
prices, Journal of Finance, 43: 1075-1093. 
 
Geman, Hélyette and William O. Smith, 2012, Theory of storage, inventory and volatility 
in the LME base metals, Resources Policy, 38: 18-28. 
 
Kaldor, Nicholas, 1939, Speculation and economic stability, Review of Economic Studies, 
7: 1-27. 
 
Keen, A., 2000, Lead and the London Metal Exchange - a happy marriage? The outlook 
for prices and pricing issues confronting the lead industry, Journal of Power Sources, 88: 
27-35. 
 
Laurent, Sébastien,  Bauwens, Luc, and Jeroen Rombouts, 2006, Multivariate GARCH 
models: A survey, Journal of Applied Econometrics, 21: 79-109. 
 
MacKinnon, James, G., Haug, Alfred, A., and Leo Michelis, Numerical distribution 
functions of likelihood ratio tests for cointegration, Journal of Applied Econometrics, 14: 
563-577.  
 



 34 

Ng, Victor K. and Stephen Craig Pirrong, 1994.  Fundamental and Volatility: Storage, 
Spreads, and the Dynamics of Metals Prices, Journal of Business, 67: 203-230. 
 
Phillips, P. C. B. and Sam Ouliaris, 1990, Asymptotic properties of residual based tests 
for cointegration, Econometrica, 58: 165–193.  
 
Radetzki, Marian, 2006, The Anatomy of three commodity booms, Resources Policy, 31: 
56-64. 
 
Ramey, Valerie A., 1989, Inventories as factors of production and economic fluctuations, 
American Economic Review, 79: 338-354. 
 
Symeonidis, Kazaros; Prokopczuk, Marcel; Brooks, Chris and Emese Lazar, 2012, Future 
basis, inventory and commodity price volatility: An empirical analysis, Economic 
Modelling, 29: 2651-2663. 
 
Samuelson, Paul, 1965, Proof that properly anticipated prices fluctuate randomly, 
Industrial Management Review: 6, 41-49. 
 
Telser, Lester G., 1958, Futures trading and the storage of cotton and wheat, Journal of 
Political Economy, 66: 233-55. 
 
Watkins, Clinton and Michael McAleer, 2005, Related commodity markets and 
conditional correlations, Mathematics and Computers in Simulation, 68: 571-583. 
 
Telser, Lester G., 1958, Futures trading and the storage of cotton and wheat, Journal of 
Political Economy, 66: 233-55. 
 
Williams, Jeffrey and Brian Wright, 1991, Storage and Commodity Markets (Cambridge: 
Cambridge University Press). 
 
Williams, Jeffrey and Brian Wright, 1989, A theory of negative prices for storage, 
Journal of Futures Markets, 9: 1-13. 
 
Williams, Jeffrey, 1986, The Economic Function of Futures Markets (Cambridge: 
Cambridge University Press). 
 
Working, Holbrook, 1949, The theory of the price of storage, American Economic 
Review, 6: 1254-1262. 
 
Working, Holbrook, 1948, The theory of inverse carrying charge in futures markets. 
Journal of Farm Economics, 30: 1-28. 
 
Working, Holbrook, 1933, Price Relations between July and September Wheat Futures at 
Chicago since 1885, Wheat Studies of the Food Research Institute, 9, xxx 



 35 

 

Appendix: Additional Cointegration Tests 

 

Section IV of the text reports Phillips-Ouliaris cointegration tests.  We also 

considered the Johansen cointegration test (trace statistic) for each metal.  This is a VAR 

system based test that assumes homogeneous error processes. The null hypothesis is that 

there are zero cointegrating relationships among the four variables. In all cases, our 

VECMs on which the Johansen tests are based allow for stochastic trends in each series 

and one lagged difference of each variable (as suggested by Schwarz criterion). These 

results, shown in Table A-I, uniformly reject the no cointegration null hypothesis in favor 

of the cointegration alternative, as the COC model predicts.  The Johansen maximum 

eigenvalue test produced identical conclusions.  

 

Table A-I: Johansen Cointegration Tests for LME Metals 

Metal Trace 
Statistics 

5% Critical 
Value p-value ** 

    
Copper 76.558 47.856 0.000 

Aluminum 86.913 47.856 0.000 
Aluminum Alloy 59.605 47.856 0.003 

Lead 95.046 47.856 0.000 
Nickel 86.882 47.856 0.000 

Tin 68.680 47.856 0.000 
Zinc 108.756 47.856 0.000 

        

 **MacKinnon, Haug and Michelis’ (1999) p-values 
 

 


