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ABSTRACT

This paper explores the use of low-frequency band-pass filters for describing long-run trends in real mineral

commodity prices. This approach has the advantage of allowing long-run trends rate to evolve gradually over

time, rather than assuming that they are constant (perhaps with occasional structural breaks) over time.

This is a flexible way of capturing the ongoing tug of war between exploration, depletion, and technological

change.

Over 100 mineral and commodities, stretching back to the late 19th or early 20th century, are considered.

The variety of LR trends is astonishing, but very few increase monotonically, contrary to the prediction of

the basic Hotelling model. Some decline monotonically (as predicted by Prebisch and Singer); some have

the U-shaped pattern predicted by Pindyck (1978), Heal (1981) and Slade (1982). Others have changed

direction up to three times in the period since 1900. The tug of war continues with exhaustion nowhere in

sight.

∗A preliminary version of this paper was Cuddington’s keynote presentation at the August 2012 conference on the Economics

and Econometrics of Commodity Prices in Rio de Janeiro. The conference was cosponsored by VALE and the Getulio Vargas

Foundation. A revised version from the 2013 IMF conference on commodity markets is scheduled for publication in the Journal

of International Money and Finance.
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I.  Overview  
 

This paper explores the use of low-frequency band-pass filters for describing 

long-run trends in more than 100 real mineral commodity prices over more than 100 

years.  Our statistical approach has the advantage of allowing long-run trend rates to 

evolve gradually over time, rather than assuming that they are constant (perhaps with 

occasional structural breaks) over time.  This is a flexible way of capturing the ongoing 

‘tug of war’ between exploration, depletion, and technological change.  Our objective is 

to provide a comprehensive description of long-term trends in nonrenewable resource 

prices, and to compare this description to theoretical predictions in the mineral and 

energy economics literature.    

Measuring the direction and magnitude of trends in the real prices of 

nonrenewable resources is of considerable interest to financial market participants, 

mineral and energy producers contemplating long-term investments extractive activities, 

and policy-makers alike, with wide-ranging implications for producers and consumers of 

mineral products, and their host governments.  Fundamental questions include: (i) Will 

real prices of at least some non-renewable resources rise dramatically over time, 

signaling increasing economic scarcity? (ii) Will some non-renewable or ‘exhaustible’ 

resource supplies indeed be physically exhausted before they become economically 

obsolete, or vice versa?  Policies and decisions that households, enterprises, and 

governments undertake concerning resource use will clearly hinge on understanding 

trends in non-renewable resource prices. 

The importance of the availability of non-renewable resources is well summarized 

by Tilton (2003).  He observes that, although extraction and consumption of non-
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renewable resources have occurred since the Stone Age, the pace of exploitation has 

rapidly accelerated.  We have consumed more aluminum, copper, iron and steel, 

phosphate rock, diamond, sulfur, coal, oil, natural gas, and even sand and gravel during 

the current century than in all prior centuries combined.  Tilton then goes on to discuss a 

number of underlying causes for this explosion in mineral use: 

 Advances in technology allow extraction…at lower and lower cost. [Shifts 

mineral supply curves down] 

 Advances in technology also permit new and better mineral commodities serving 

a range of needs. [Shifts mineral demand curves out/up] 

 Rapidly rising living standards in many parts of the globe are increasing demand 

across the board for goods and services, including many that use mineral 

commodities intensively in their production [Shifts the derived demand for 

minerals out/up] 

 Surge in world population means more and more people with needs to satisfy. 

[Shift the derived demand for mineral in or out depending on the relative mineral 

intensity of various goods.]   

In addition, exploration and extraction technologies have also improved 

dramatically, as evidenced by the major upheavals occurring in the hydrocarbon 

sector on account of horizontal drilling and hydraulic fracturing techniques. 

In assessing the repercussions from ongoing consumption and exploitation of non-

renewables, real prices serve as the key measure of economic scarcity – in part because 

in-situ reserve values and marginal production costs are heterogeneous, difficult to 
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measure, and expensive to obtain from industry data sources.
1
  Periods of sharply rising 

real resource prices garner intense interest from policy makers, who seek to understand 

perceived ‘shortages’ (physical deprivations of resources in the short run), as well as geo-

political threats involving access to resource-intensive regions.  Their responses to real 

price spikes vary in intensity and reach, from commissioning official studies to 

promulgating new policies.  Examples of the former include the “Paley Commission” 

concerning the sufficiency of exhaustible resources during the Korean War, similar 

endeavors following the oil price shocks of the 1970s, and recent legislative inquiries into 

the availability of “rare earth” minerals in the United States and Europe.  Policy 

interventions include the imposition of oil price controls and rationing of gasoline 

supplies in the 1970s and stockpiling in the case of the U.S. Strategic Petroleum Reserve 

and National Defense Stockpile.  

By contrast, epochs when primary commodities’ prices (relative to those in the 

manufacturing sector) exhibit a secular declining trend give rise to wide-ranging 

reorientation of nations’ economic policies.  The widespread adoption of “import-

substitution” policies in South America, for example, was designed to prevent excessive 

reliance on primary commodity exports. 

The next section of this paper commences with a brief overview of the theoretical 

and empirical literature concerning long-run price trends of non-renewable resources. 

Section III describes our long-span data and the band-pass methodology used to evaluate 

real price trends. Sections IV through VIII present our empirical findings and comment 

                                                        
1
 See Brown & Field (1978) and Tilton (2003) for discussions concerning the drawbacks to the alternative 

economic measures of resource scarcity. 
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on how well they match various theoretical predictions. The paper ends with some 

concluding remarks.   
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II.  A Selective Review of Literature on Long-term Mineral 

Price Trends 
 

Measuring trends in the real price of resources allows us to assess various 

economic theories, including the classic Hotelling (1931) model of non-renewable 

resource prices, and generalizations and extensions of that model by Stiglitz (1976), 

Pindyck (1978), Hartwick (1980), Heal (1981) and Slade (1982), and many others.  The 

benchmark Hotelling model predicts that the shadow prices of in-situ resources should 

rise at the rate of interest. (If marginal extraction costs were zero, prices of mineral 

products would also rise at this rate.)   

Subsequent authors, including Pindyck (1978), Levhari and Pindyck (1981), and 

Slade (1982), focus on the countervailing forces of declining resource quality, 

technological innovation, exploration, and recycling.  In these models, a U-shaped price 

path emerges with prices initially falling but then later rising as scarcity overpowers the 

downward pressure that technological change exerts on prices.  

In addition to the Hotelling literature, there is an important strand of economic 

development literature that examines the price paths of mineral and energy commodities, 

namely the Prebisch-Singer hypothesis.  Prebisch (1950) and Singer (1950) anticipate 

there will be a negative secular trend in the relative prices of primary commodities
2
 in 

terms of manufactured products, diminishing the terms of trade of commodity-intensive 

exporters over time. When combined with a slow rate of technical progress in the primary 

sector relative to manufactures, the Prebisch-Singer hypothesis provides a plausible 

                                                        
2 Prebisch-Singer’s analysis pertained to primary commodities (to include food and non-food agricultural 

products) in general, not just nonrenewable resources.   
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explanation as to why countries specializing in commodity production and export lag 

behind the industrialized world. 

  Empirical investigations of the Prebisch-Singer hypothesis include Grilli and 

Yang (1988), Cuddington and Urzúa (1989), Powell (1991), Kim et al (2003), 

Cuddington et al (2007), and Harvey et al (2010).   

 The Hotelling (1931) ‘benchmark’ theory of nonrenewable resources presents the 

optimal control problem faced by an owner of an exhaustible resource stock (R) sold in a 

competitive market. Producers choose the extraction level in each period to maximize the 

discounted profit steam:   

   ∫ [( ( ) ( )    ( )]      
 

 

     (   ) 

 

subject to the constraints concerning production and reserves:  

 

 ( )     ( )     ̇    ( ) 
 

where r is the market discount rate, p(t) represents price, and q(t) represents quantity of 

resource. The cost function, C, is a constant unit extraction cost.  Hotelling demonstrated 

that in a competitive market, the market price of an extracted resource should exceed the 

marginal extraction cost by an amount equal to the shadow price of the reserve being 

used – the so-called user cost.   Moreover the user cost should rise over time at a rate 

equal to the interest rate.   This is the famous “Hotelling Rule.”  Dasgupta and Heal 

(1979, p. 156) note, “It would not be an exaggeration to regard [this equation] as the 

fundamental principle of exhaustible resources.”  

Although the basic Hotelling model yields intuitive results and an appropriate 

framework for evaluating the optimal extraction of exhaustible resources over time and 
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the concomitant price path, the benchmark model contains several limiting assumptions, 

as noted by Gaudet (2007).  First, marginal costs are assumed unvarying, independent of 

current production or remaining reserves, and impervious to technological progress.  

Second, the stock of reserves is fixed and uniform in grade, obviating the possibility of 

exploration and discovery of additional reserves. Third, extraction capacity is not at all 

limited by the large irreversible investment of capital equipment that is required to bring 

mineral production online.  Some 80 years since Hotelling’s seminal work, scores of 

extensions and generalizations of the Hotelling model have appeared. 

Long-span mineral price data are readily available and have been examined by 

many researchers in both the resource economics (Hotelling) and economic development 

(Prebisch-Singer) literatures. The ‘game’ is to get the longest data span possible and to 

apply robust time series techniques to these data.  Classic examples of this approach 

include Barnett and Morse (1963), where the authors developed scarcity indexes based on 

aggregated labor and capital cost per unit of mineral, forestry, and agriculture outputs to 

test if resource exhaustion was indeed a threat.  With a dataset from 1887 through 1957, 

the authors found no significant trend (either positive or negative) for any of the 

aggregated output categories.  Similarly, Smith (1979) performed regressions on time-

series data running from 1900 to 1973, postulating a linear relationship between price and 

time.  He concluded that time coefficients for the mineral, forestry, or agriculture 

aggregated commodity indices were generally not stable over time.  He found that time-

trend coefficients appeared to become less negative over time, and, in some instances, 

actually increased, with only forestry products showing a positive and statistically 

significant positive time trend. 
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 In an effort to capture the countervailing effects of declining ore grade and cost-

saving technological progress on resource prices, Slade (1982) introduced a quadratic 

time trend term, thereby generalizing the basic linear time trend model.  Her model 

assumes that marginal cost is constant for a given grade and state of technology, and that 

the rate of change of price is equal to the rate of change of marginal cost due to changes 

in technology plus the discount rate times the rental rate. If the rate of technical change is 

sufficiently large, then the decreasing rate of marginal cost will eclipse the impact of the 

rent, and prices will correspondingly fall.  However, if the change in marginal cost is 

negative but approaching zero, then prices will increase – implying a U-shaped price 

path. Taking price series for eleven separate exhaustible mineral and energy commodities 

and an aggregate index of the eleven over the period 1870-1978, Slade found that for a 

quadratic time trend specification all eleven minerals and the aggregate index exhibited 

negative linear time trend and positive quadratic trend coefficients.  All but two of the 

linear coefficients were statistically significant at the 90 percent confidence level, and all 

but one of the quadratic trend coefficients was statistically significant at the 90 percent 

confidence level. The empirical results gave credence to the U-shaped price path 

anticipated by Slade’s theoretical model of resource prices.  

Much of the literature focuses on estimating either Trend Stationary (TS) or 

Difference Stationary (DS) specifications in order to estimate the constant long-term 

trend (albeit with the possible search for occasional breaks).  The overall conclusion is 

that any trend is small and difficult to estimate precisely given the significant year-to-
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year volatility in the price series.  See, e.g., Smith (1979) Cashin and McDermott (2001), 

and Cuddington et al (2008).3 

III. Extracting Variable Long-run Trends using Band-Pass 

Filters 

Nonrenewable prices in the long run presumably reflect the tug-of-war between 

exploration, depletion and technological change as modeled by Slade (1982) and 

explicated by Tilton (2003).  There is no reason to expect that balance among these forces 

should remain constant over the longest available data span, as much of the univariate 

time series modeling assumes.  This notion is not new in the resource economics 

literature.  For example, Barnett and Morse (1963) and Smith (1979) pointed to the 

presence of alternating trends of rising and falling prices of non-renewable commodity 

prices over the timespans 1870 to 1957 and 1900 to 1973, respectively. Tilton (2003, p. 

54) summarizes the literature on long-term price trends this way:   

History also strongly suggests that the long-run trends in mineral prices…are not fixed.  

Rather they shift from time to time in response to changes in the pace at which new 

technology is introduced, in the rate of world economic growth, and in the other 

underlying determinants of mineral supply and demand.  This not only complicates the 

task of identifying the long-run trends that have prevailed in the past, but cautions against 

using those trends to predict the future.  Because the trends have changed in the past, they 

presumably can do so as well in the future. 

 

                                                        
3 Using the quadratic trend model, Berck and Roberts (1996) found U-shaped price paths in trend-

stationary models, but not with difference stationary models.  

 

Krautkraemer (1998) found prices for many minerals and energy commodities fell during 1980s and 1990s, 

likely altering the results of Slade (1982). 

 

Concerning the Prebisch-Singer literature, Harvey et al (2010) found, using data series spanning the 

seventeenth to the twenty-first centuries, a secular, deteriorating trend is a relevant phenomenon for a 

significant proportion of primary commodities. 
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It is our belief that empirics on long-term mineral price behavior should allow for 

variable trends – that is, the gradual evolution in LT trends without constraining the 

trends to be constant (or u-shaped) over time.  Band-pass filters, which decompose an 

economic time series into trend and cyclical components, provide one way of doing this 

if our objective is data description and historical analysis, rather than hypothesis testing. 

Economists have a long-standing interest in decomposing various economic time series 

into trends and cycles. Empirical economists often use data filters to isolate features of 

interest and eliminate elements that are a nuisance from the point of view of the 

theoretical models they are studying.  

Explaining how data filters work, Cogley (p. 70) notes: “The starting point is the 

Cramer representation theorem, … which provides a basis for decomposing xt and its 

variance by frequency.  It is perfectly sensible to speak of long- and short-run variation 

by identifying the long run with low-frequency components and the short run with high-

frequency oscillations.”  For economists working in the time (rather than frequency) 

domain, the cyclical component is a two-sided moving average with infinitely many leads 

and lags.  

Although the ‘ideal’ filters have infinitely many leads and lags, actual filters 

necessarily involve lead and lag truncation.  Baxter-King (1999) and Christiano-

Fitzgerald (2003) provide two similar methods for doing this.  Actual filters may be 

symmetric (centered) or asymmetric (uncentered).  Symmetric filters have the advantage 

that they do not cause phase shift in the smoothed series relative to the underlying series.  

On the other hand, they have the disadvantage that they cannot be calculated all the way 

to the end of the dataset under investigation.  For example, consider a 51-period centered 
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moving average.  This moving average can’t be calculated for the final 25 periods of the 

dataset.  In contrast, asymmetric filters are designed to allow the filtered series to be 

calculated all the way to both ends of the data set, but invariably involve some phase 

shift. 

Band-pass (BP) filters allow us to extract cyclical components within specified 

periods (or frequencies) from an economic time series. Through repeated use of the filter 

with different ‘windows,’ it is straightforward to decompose any time series into a set of 

mutually exclusive and completely exhaustive cyclical components that sum to the series 

itself.  In the initial application, Baxter and King (1999) defined business cycle 

fluctuations as lying in a ‘period window’ between 6 and 32 quarters.
4
   Using this 

definition of the business cycle component, they then decompose arbitrary quarterly-

frequency time series Yt  into three components: 

 

Yt º Yt (2,6)+Yt (6,32)+Yt (32,¥)

where

Yt (2,6) = seasonal component + noise

Yt (6,32) = biz cycle component

Yt (32,¥) = trend component

   

                                                        

4
 Note that the highest-frequency (or shortest period) cycle that can be identified equals 2 times the data 

frequency. 
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Parenthetically, this ‘trend’ defined as cyclical components greater than 32 quarters is not 

very smooth or trend-like for many macro series.     

In another application of band-pass filters, Comin and Gertler (2006) study 

business cycles and ‘medium-term’ business cycles using quarterly data.  Their trend 

consists of frequencies in excess of 200 quarters (or 50 years).  So their decomposition 

looks like this: 

 

 

Yt º Yt (2,32)+Yt (32,200)+Yt (200,¥)

where

Yt (2,32) = biz cycle + seasonal + noise

Yt (32,200) = medium - term cycle

Yt (200,¥) = trend

   

This results in a much smoother long-run trend.   

Cuddington-Jerrett (2008) use annual data to decompose the prices for six metals 

traded on the London Metal Exchange (the ‘LME6’) into business cycles, intermediate 

cycles, super cycles, and long-run trend.  They use the Baxter-King and Christiano-

Fitzgerald definition of the business cycle component as 2-8 years, and a 20-70 year 

window for super cycles as implied by the discussion in Alan Heap’s (2005) work.  This 

leaves an intermediate or medium cycle in the gap between eight and twenty years, and 

trend as the residual of 70 years and beyond. Thus, the Cuddington-Jerrett decomposition 

is: 
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Pt º Pt (2,8) + Pt (8, 20) + Pt (20, 70) + Pt (70,¥)

where

Pt (2,8) = biz cycle

Pt (8, 20) = mediumcycle

Pt (20, 70) = super cycle

Pt (70,¥) = long - run trend

   

The present paper follows Cuddington and Jerrett by defining the long-term trend 

as all cyclical components in excess of 70 years denoted Pt (70,¥)using the asymmetric 

Christiano-Fitzgerald (ACF) filter: 

 

Pt º Pt (2,70)+ Pt (70,¥)

Pt (2,70) = 'aggregate 'cyclical component

Pt (70,¥) = long - term trend component

   

 

A trend defined this way will evolve very gradually over time.  It can accommodate 

series that are stationary, trend stationary or I(1) with or without drift. Our definition of 

the long-term trend is, of course, somewhat arbitrary.  We also considered 50 years, 

which is the implied LT trend in the Comin-Gertler (2006) paper, for comparative 

purposes. 

Our definition is consistent with various informal notions of the long run.  It is 

longer than the typical capital investment horizon for long-term mining projects.  Sillitoe 

(1995), on the other hand, finds that the time from initial exploration spending to cash 

flow is 27.5 years for base metals and 29 years for gold projects.  
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Less formally, consider the division of a typical individual’s life into three broad 

periods: ages 0-20 are the ‘financial unaware;’ those in the 35 year span from 20 through, 

say 55 are ‘active investors,” and finally those in the age cohort 55-90 are ‘experienced 

investors.’  This would yield a ‘long run’ of roughly 70 ‘aware’ years, after which we are 

all dead, to (mis)quote Keynes!     

 

Before turning to our empirical analysis, we conclude this section with some 

cautionary remarks about band-pass filters. First, tests of the statistical significance of a 

specified cyclical component are unavailable (as far as we know).  How do we know 

when/if our cyclical components are statistically or economically significant?  Thus, our 

analysis is best viewed as an exercise in descriptive statistics, not statistical inference.   

Although data filters are certainly convenient for constructing rough and ready measures 

of the business cycle or longer cycles, some economists are concerned about the spurious 

cycle problem.  As Cogley (p. 74) notes: “Cogley and Nason (1995) consider what would 

happen if xt  were a random walk with drift.  For a random walk, expected growth is 

constant regardless of whether the level is a local minimum or maximum.  Because it 

lacks the catching-up feature, many economists would say that a random walk is 

acyclical.  Nevertheless, when the Hodrick-Prescott filter is applied to a random walk, a 

large and persistent cycle emerges.  Thus, the Hodrick-Prescott filter can create a 

business cycle even if no trend reversion is present in the original data.  Cogley and 

Nason call this a spurious cycle.  Furthermore, the problem is not unique to the Hodrick-

Prescott filter.  Benati (2001), Murray (2003) and Osborn (1995) document similar results 

for band-pass filters and for other approximations to high-pass filters.” (p.74)  
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This spurious trend and cycle problem, it should be highlighted, is also an issue when 

fitting linear, quadratic or higher-order deterministic trend models.  We make no effort to 

resolve these difficult conceptual issues in this paper.   

 

 

IV.   Variable Long-term Trends  
 

 In this paper, long-span data for real prices for a wide variety of minerals are 

considered.  We begin with the Economist Industrial Commodity Price Index, which is 

available annually from 1862 onward and has been widely used in discussions of long-

term commodity price trends. Next, we turn to an analysis of the six major metals on the 

London Metal Exchange (LME6).  Finally, we analyze the entire non-fuel mineral 

commodity dataset maintained by the U.S. Geological Survey (USGS).  The USGS 

website provides annual data on more than 100 mineral commodities from 1900 (in many 

cases) through 2010.  These include the LME6 utilized in Slade (1982) - - although the 

data sources and price deflator for the USGS and Slade are different. Concerning the data 

source discrepancies, Slade primarily relies on Manthy (1978) and other sources featuring 

U.S. market prices. By contrast the USGS uses “unit value” prices derived from 

“apparent consumption” that are based on the volume and dollar value of U.S. mineral 

consumption derived from domestic production, net imports, and changes in inventories. 

Regarding the deflator, the USGS utilizes the Consumer Price Index (1998=100), while 

Slade uses the Wholesale Price Index (1967=100), subsequently renamed the Producer 

Price Index (PPI).  Recent studies have indicated that the CPI tends to overstate inflation 

on the order of 1.1% per annum (Boskin et al. 1996) due to influences such as 

substitution bias (consumers substitute away from higher price goods), outlet bias 
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(changing preferred places of purchase), and ignoring improvements in product quality 

over time (Federal Reserve Bank of San Francisco 1997).  

Nevertheless, Tilton (2003) and Zellou and Cuddington (2012) show that choice 

of deflator has little impact on the analysis of long-term price trends – whether the CPI, 

PPI, or the U.S. Gross Domestic Product Implicit Price deflator is used. This finding 

extends to use of the United Nations Manufacturers Unit Value (MUV) index, a series 

reflecting the unit values of manufacturing exports from several industrial countries.
5
  

The MUV Index is generally used in analyses of the Prebisch-Singer hypothesis, whereby 

researchers deflate renewable and non-renewable primary commodity prices by an index 

of manufacturing unit values. Consequently, this analysis of long-run trends in mineral 

commodity prices not only speaks directly to the models and empirical predictions of the  

resource economics strand of the literature (Hotelling), but also the economic 

development (Prebisch-Singer) literature as well. The graphs in Figure 1 below displays 

the CPI, GDP Deflator, PPI, and MUV index values from 1990 to 2010 in levels as well 

as annual percentage changes.  What one can see is that the movements of all four 

deflators tend to move in concert with one another; the MUV is correlated with the other 

three deflators from a correlation coefficient of .976 and above.  The choice of deflator 

would presumably be a much more important issue if our focus was on short-run 

fluctuations. 

 

 

 

                                                        
5 See among others Grilli-Yang (1988) and Harvey et al. (2010) where the MUV is used to deflate primary 

commodity prices. 
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Figure 1: Comparison of deflator index values, in levels and percentage changes, 

1900-2010 

 

 

 

The Economist Industrial Commodity Price Index (EICPI), available annually 

from 1862 through 2011, serves to illustrate our approach – although not especially 

appropriate for the study of nonrenewable resources as it includes both renewables and 

nonrenewables.  In particular, agricultural non-food products are included.  The index is 
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more relevant for examining the Prebisch-Singer hypothesis, which was not limited to 

nonrenewables.
6
  A word of caution about the EICPI is in order.  Both the weights on 

various commodities and the calculation methods have changed over the past century and 

a half.  Thus, any conclusions based on this index must be interpreted with caution.  

Nevertheless, The Economist Index is widely used in empirical research on long-term 

trends in commodity prices, in part because of its long span.
78

 

Table 1: The Economist Industrial Commodity Price Index 

 

The Economist Industrials Commodity Price Index 
 

Commodities  Weights 

Soy oil  0.2 

Coconut oil  0.6 

Palm oil  1.8 

   

Wool Australian  1.4 

Wool NZ  1.4 

Cotton  9.3 

Hides  2.1 

Rubber  9.0 

Timber  4.3 

   

Copper  24.2 

Lead  1.7 

Zinc  4.6 

Tin  2.3 

Aluminum  29.5 

Nickel  7.6 

Total  100.0% 

                                                        
6 The broader Economist Commodity Index also includes agricultural food products. 

7
 The Economist research staff notes: “Please bear in mind that the index has had different components and 

methods of calculation over the years, so should be regarded as a guide only.” (Private correspondence, 

July 4, 2012). 

 
8 See Cashin & McDermott (2001) as an example.  Using the EICPI from 1862-1999, the authors show a 

downward trend of -1.3 percent per year. 
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The U.S. Gross Domestic Product Implicit Price deflator is used to calculate real prices in 

the data provided by The Economist magazine.  The Economist also provides a nominal 

index so one could experiment with different deflators.  

Use of a broad index can hide wide variation in trends across commodities.  Slade 

(1982, p. 129) cautions:
9
 

“With the exception of lead and zinc, the quadratic curvature for the individual 

commodities is fairly pronounced.  However, prices of the aggregate commodity show no 

marked trend, either linear or quadratic. Because the minimum point on the price curve occurs 

early in the period for some commodities (tin and coal) and late in the period for others 

(aluminum), when the commodities are aggregated, the pronounced curvature disappears. 

Therefore, general conclusions about natural-resource scarcity cannot be drawn from the 

aggregate index alone.” [Emphasis added] 

  

If one graphs the EICPI using U.S. GDP deflator, along with its long-run trend 

based on a band-pass filter for components greater than 70 years, one gets Figure 1.  Note 

that the long-run trend defined in this way is negative from the beginning of the dataset in 

1862 until 1989 when it turned positive.  The EICPI then retained a positive trend 

through the end of the dataset in 2011. 

 

 

 

 

 

 

 

 

 

 

 

                                                        
9 In the same vein, Smith (1979) cautioned against reading too much into long-term trends of aggregate 

commodity index, citing the varying aggregate composition and the intensity of use of different 

commodities over long time spans. 
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Figure 2: The Economist Industrial Commodity Price Index Divided by the  

U.S. Implicit GDP Deflator (Log Scale) 

 

 
 

The Figure shows the Real Industrial Commodity Price Index along with its long-run 

trend defined as the asymmetric Christiano-Fitzgerald Band-Pass Filter of greater than 70 

Years. 
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VI. Long-Run Trends for the LME6: ACF-Band-Pass Filter 

Results  
 

Carrying out a similar analysis for the LME6 yields a wide variety of patterns for 

their long-term trends. The growth rate in the long-run trend for aluminum is negative 

over the entire 111-year time span (1900-2010).  It never changes direction, although the 

negative rate of change in the long-run trend varies over time.  The long-run price of 

nickel changes direction once, going from a negative to a positive long-term trend 

beginning in 1944.  Thus, this series is in line with the predictions of Pindyck (1981), 

Slade (1981) and others. 

Tin and zinc, on the other hand, have long-run trends that are initially negative, 

but later turn positive prior to or on the eve of the Second World War (1924 and 1940, 

respectively) then both swing negative again beginning in 1971, and finally are on the 

verge of turning positive again in 2010.  This pattern seemingly follows the narrative of 

world economic growth since the mid-20
th

 century – expansive economic growth during 

the postwar rebuilding of Europe and East Asia until world growth, particularly in 

industrialized countries, stalls in the 1970s only to experience a resurgence in the 1990s.   

The patterns for copper and lead are even more complex, as their long-run trends 

have changed direction three times in the 111-year data sample.  Both start the 20
th

 

century in a negative trend, with lead shifting to a positive trend in 1926 that persists until 

1950.  Copper turns positive later -1939- with the positive trend lasting until 1969.  Both 

remain in negative trends until the early 1990s, when they turn positive within a year of 

one another - 1994 and 1995 for copper and lead, respectively.  
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These results clearly indicate the need to examine the long-term trends in 

individual mineral commodities, as the number and timing of their turning points varies 

widely. Consequently, looking at an overall index is of limited value for analysts 

interested in extracting variable long-run trends. 

Figure 2: Long-run Trends in the LME6 as Measured by the Component in Excess 

of 70 Years 
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Table 2: 

ACF-Band-pass Filter Results on the Growth Rate in the Long-run Trend for the 

LME6 Metals 
 

Mineral Observations Average 
Growth Rate in 

LR Trend 

Min Max Range Number 
of Trend 
Switches 

Aluminum 111 -0.020 -0.034 -0.009 0.024 0 

Copper 111 -0.004 -0.026 0.013 0.039 3 

Nickel 111 -0.004 -0.029 0.009 0.039 1 

Lead 111 -0.003 -0.012 0.012 0.024 3 

Tin 111 0.000 -0.013 0.016 0.029 2 

Zinc 111 -0.003 -0.010 0.003 0.013 2 

  

  

VII. Long-run Trends for the USGS 102 Mineral Commodities 
 

This section briefly summarizes the growth rates in the long-run trends for all one 

hundred and two mineral commodities reported by the USGS using annual data that, in 

many cases, dates back to 1900.  As Figure 3 below shows, the trends for many of these 

minerals have changed, sometimes dramatically, over time.  Changes in the sign of the 

trend, even multiple changes in sign, are common. 

Given the large number of mineral commodities considered, our findings are 

summarized by providing descriptive statistics on the annual long-term growth rate: the 

mean, minimum, maximum and range.  It is interesting to note whether the range 

includes both positive and negative values, which would imply one or more changes in 

direction of the LT trend. 
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Table 3: USGS Mineral Commodities 
 
ACF-Band-Pass 

Filter Results on 
Long-run Trend  

Obs. Average 
Growth Rate in 
Lon-run Trend  

Min Max Range Number 
of Trend 
Switches 

Abrasives 
(manufactured) 

   1916-2010 -0.011 -0.017 -0.004 0.013 0 

Abrasives 
(natural) 

1914-2010 -0.007 -0.011 0.000 0.011 1 

Abrasive Special 
Silica 

1914-2007 0.017 -0.005 0.062 0.067 2 

Silver 1900-2010 -0.001 -0.028 0.017 0.045 1 

Aluminum 1900-2010 -0.020 -0.034 -0.009 0.024 0 

Aluminum Oxide  1916-2010 -0.022 -0.054 0.001 0.055 2 

Alumina 1961-2010 -0.007 -0.009 -0.003 0.006 0 

Arsenic 1900-2010 -0.016 -0.045 0.007 0.052 2 

Asbestos 1900-2010 0.001 -0.013 0.022 0.036 2 

Gold 1900-2010 0.007 -0.010 0.023 0.033 1 

Boron 1900-2010 -0.010 -0.038 0.018 0.056 2 

 Clay- Ball clay 1900-2010 -0.013 -0.032 0.005 0.038 2 

Barite 1900-2010 -0.003 -0.011 0.006 0.017 3 

Bauxite 1900-2010 -0.011 -0.028 0.005 0.033 2 

Beryllium 1935-2010 -0.024 -0.049 -0.009 0.040 0 

Clay-Bentonite 1930-2010 -0.017 -0.026 -0.006 0.021 0 

Bismuth 1900-2010 -0.020 -0.032 -0.007 0.025 0 

Bromine 1900-2006 -0.025 -0.037 -0.006 0.031 0 

Cadmium 1900-2010 -0.025 -0.068 0.016 0.085 2 

Cement 1900-2010 -0.002 -0.009 0.003 0.012 1 

Clays 1900-2010 -0.006 -0.022 0.008 0.030 3 

Cobalt 1900-2010 -0.008 -0.029 0.009 0.038 2 

Chromium 1900-2010 0.006 -0.028 0.024 0.052 1 

Cesium 1959-2010 0.045 -0.042 0.099 0.141 1 

Copper 1900-2010 -0.004 -0.026 0.013 0.039 3 

Diamond 
(industrial) 

1900-2010 -0.061 -0.117 -0.021 0.096 0 

Diatomite 1900-2010 0.005 -0.009 0.019 0.028 1 

Clay Fire clay 1900-2010 -0.001 -0.008 0.004 0.012 1 

Feldspar 1900-2010 -0.002 -0.013 0.003 0.016 1 

Iron ore 1900-2010 0.003 -0.017 0.016 0.033 3 

Iron oxide 
pigments 

1900-2010 0.011 -0.011 0.032 0.044 1 
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Iron and steel 
scrap 

1934-2010 0.001 -0.015 0.022 0.037 2 

Iron and steel 
slag 

1942-2010 0.003 -0.003 0.014 0.017 2 

Iron and steel 1900-1988 0.000 -0.020 0.017 0.037 2 

Fluorspar 1900-2006 0.003 -0.019 0.024 0.044 1 

Clay-Fuller's 
earth 

1900-2010 -0.006 -0.012 -0.003 0.008 0 

Gallium 1943-2010 -0.070 -0.090 -0.036 0.053 0 

Garnet 
(industrial) 

1900-2010 -0.012 -0.023 0.001 0.024 2 

Germanium 1945-2010 -0.021 -0.038 -0.009 0.029 0 

Gemstones 1929-2010 -0.062 -0.099 -0.018 0.081 0 

Graphite 
(natural) 

1900-2010 -0.010 -0.046 0.024 0.070 2 

Gypsum 1900-2010 -0.018 -0.054 0.019 0.073 2 

Helium 1938-2010 -0.016 -0.022 -0.010 0.011 0 

Hafnium 1959-2010 -0.017 -0.025 0.000 0.025 1 

Mercury 1900-2010 -0.007 -0.043 0.023 0.066 3 

Iodine 1928-2010 -0.014 -0.050 0.013 0.063 2 

Indium 1936-2010 -0.038 -0.110 0.015 0.125 2 

Clay-Kaolin 1900-2010 -0.004 -0.014 0.009 0.023 2 

Kyanite 1934-2010 -0.012 -0.024 -0.004 0.021 0 

Lithium 1952-2010 -0.025 -0.039 -0.016 0.023 0 

Lime 1904-2010 -0.001 -0.005 0.004 0.009 2 

Magnesium 
compounds 

1900-2010 0.004 -0.012 0.022 0.034 3 

Magnesium 
metal 

1915-2010 -0.033 -0.112 0.017 0.130 2 

Mica (sheet) 1900-2008 -0.016 -0.052 0.021 0.073 2 

Mica (scrap and 
flake) 

1923-2010 -0.006 -0.023 0.015 0.039 1 

Manganese 1900-2010 0.006 -0.006 0.018 0.024 2 

Molybdenum 1912-2010 0.007 -0.012 0.027 0.039 2 

    Miscellaneous 
clay and shale 

1900-2010 -0.012 -0.024 0.007 0.031 1 

Metallic 
Abrasives 

1916-2010 -0.011 -0.029 0.008 0.037 2 

Nitrogen 1950-2010 -0.016 -0.030 0.009 0.038 1 

Sodium sulfate 1920-2010 0.001 -0.013 0.010 0.023 2 
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Niobium 
(Columbium)  

1964-2000 0.003 0.001 0.006 0.004 0 

Nickel 1900-2010 -0.004 -0.029 0.009 0.039 1 

Lead 1900-2010 -0.003 -0.012 0.012 0.024 3 

Peat 1904-2010 -0.016 -0.028 -0.007 0.021 0 

Platinum-group 
metals 

  1900-2010 0.005 -0.025 0.052 0.077 2 

Phosphate rock 1900-2010 -0.003 -0.025 0.017 0.042 3 

Potash 1900-2010 -0.015 -0.048 0.022 0.070 1 

Perlite 1946-2010 -0.006 -0.010 0.001 0.011 1 

Pumice and 
pumicite 

1902-2010 -0.013 -0.027 0.002 0.028 2 

Quartz crystal 
(industrial) 

1932-1998 0.049 0.001 0.116 0.114 0 

Rare earths 1922-2010 -0.008 -0.032 0.031 0.063 1 

Rhenium 1964-2010 -0.032 -0.052 -0.009 0.043 0 

Sulfur 1900-2010 -0.016 -0.032 -0.004 0.028 0 

Salt 1900-2010 -0.005 -0.012 -0.001 0.011 0 

Antimony 1900-2010 0.001 -0.018 0.024 0.042 3 

Silicon Carbide 1916-2010 -0.011 -0.020 -0.006 0.013 0 

Soda ash 
(sodium 

carbonate) 

1920-2010 -0.013 -0.026 -0.007 0.019 0 

Selenium 1909-2010 -0.010 -0.038 0.021 0.059 3 

Silicon 1923-2010 0.003 -0.017 0.030 0.046 2 

Tin 1900-2010 0.000 -0.013 0.016 0.029 2 

Sand and gravel 
(construction) 

1902-2010 -0.006 -0.027 0.002 0.030 2 

Sand and gravel 
(industrial) 

1902-2010 0.003 -0.008 0.010 0.018 1 

Strontium 1917-2010 0.006 -0.018 0.030 0.048 2 

Steel 1940-2010 0.002 -0.004 0.010 0.014 1 

Stone (crushed) 1900-2010 0.003 -0.020 0.029 0.049 2 

Stone 
(dimension) 

1900-2010 -0.001 -0.018 0.018 0.036 2 

Tantalum 1964-2010 0.000 -0.004 0.009 0.013 1 

Talc and 
pyrophyllite 

1900-2010 -0.005 -0.013 0.001 0.014 2 

Tellurium 1917-2010 0.006 -0.020 0.024 0.045 1 

Thorium 1951-2010 0.009 -0.009 0.039 0.048 1 

Titanium metal 1941-2010 -0.037 -0.066 -0.014 0.052 0 
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Titanium dioxide 
pigment 

1939-2010 -0.002 -0.007 0.002 0.010 2 

Titanium scrap 1976-2010 0.001 0.000 0.002 0.002 2 

Thallium 1942-2010 0.044 -0.030 0.117 0.147 1 

Tripoli (Natural 
Abrasive) 

1914-2010 -0.001 -0.010 0.007 0.016 2 

Vanadium 1910-2010 -0.009 -0.023 0.003 0.026 3 

Vermiculite 1924-2010 -0.008 -0.046 0.018 0.064 2 

Tungsten 1900-2010 0.003 -0.022 0.025 0.048 2 

Wollastonite 1959-2010 -0.007 -0.012 0.002 0.014 1 

Zinc 1900-2010 -0.003 -0.010 0.003 0.013 2 

Zirconium 
mineral 

concentrates 

1918-2010 0.000 -0.019 0.022 0.040 2 

Average All 
USGS 102 

varies -0.007 -0.027 0.013 0.040 1.4 

 
The time plots for all 102 mineral commodities, along with their respective long-run 

trend components (i.e. BP > 70 years), are shown in the Appendix for interested readers.  

The empirical analysis of variable long-run trends in a vast array of mineral 

commodity prices suggests a wide range of possibilities.  Nearly a quarter of the mineral 

commodities (a total of 24) exhibit no shift in the long-term trend whatsoever; of those, 

all but two (Niobium, Industrial Quartz Crystal) exhibit incessant negative trends.  No 

mineral commodity exceeded three changes in the sign of the long-run trend.  

Some minerals have price trends that average positive over time (Gold, Iron Ore, 

Silicon) but more (69 or more than two-thirds of the total) have average negative trends 

(e.g. Aluminum, Bauxite, Industrial Diamonds, Zinc) most of the time.  The orientation 

toward negative trends among the commodity prices tends to be (mildly) supportive of 

the expectations of the Prebisch-Singer hypothesis. Many of the minerals have long-run 

trends that vary over time, often switching direction two or three times (51 mineral 

commodities had long-run trends that have changed direction twice or thrice), but not 
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necessarily exhibiting the U-shaped pattern predicted by Pindyck, Heal, and Slade. These 

commodities include Cobalt, Copper, Iron Ore, Iron and Steel, Molybdenum, Lead, 

Platinum Group Metals, Tin, and Zinc. Nevertheless some minerals’ long-run trends 

exhibit the U-shaped path, as evidenced by Gold, Nickel, Chromium, Graphite, Rare 

Earths, and Tellurium.    

The wide variety of patterns in the evolution of long-term trends suggests that 

analysis of an aggregate commodity index should be undertaken with great care, if at all!  

Variable trends should be analyzed on a commodity-by-commodity basis.  Differences in 

long-run variable trends across commodities presumably reflect the ongoing tug-of-war 

between exploration, depletion and technological change.   Any inquiry and explanation 

of the relative vitality or weakness of each countervailing force is best carried out at the 

individual commodity level, but is beyond the scope of this paper.   

While the ‘stylized facts’ obtained in this paper are extremely useful, we highlight 

a couple of conclusions that should not be drawn from them from the perspective of 

financial markets and mineral sector long-term capital investments.  First, our 

conclusions regarding trends say nothing about the viability of commodities (or more 

narrowly mineral commodities) as a financial asset class.  Second, the long-term trends 

alone imply nothing about the expected profitability of investments in exploration 

activity or long-term investments in resource extraction. 

Regarding financial investment in commodities, it is well known that returns from 

rolling futures contracts can differ greatly from spot returns.   See, e.g., Gorton and 

Rouwenhorst (2006) who provide “some stylized facts about commodity futures and 

address some commonly raised questions: Can an investment in commodity futures earn 
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a positive return when spot commodity prices are falling?"  (P.7) They conclude: Yes 

indeed!  "The historical performances of spot commodity prices and collateralized 

commodity futures returns exhibit large differences." (GR, p.50)  As their Table 1 shows, 

the ‘buy and hold’ return on spot commodity positions is 4.64% nominal (with inflation 

averaging 4.14%).  The comparable futures return was 11.46%. With periodic 

rebalancing, the spot returns improve a lot, but are still inferior to futures investments.  

Investing via futures contracts involves returns from several sources: (i) trends in spot 

prices, (ii) the roll return on maturing forward contracts, (iii) interest income on fully 

collateralized positions (assuming 100 margin), and (iv) portfolio rebalancing among the 

commodities in the index.  Note also that spot positions incur storage, shipping, and 

insurance charges, so spot returns that ignore these considerations are overstated. 

Regarding long-term capital investments in mining: Why would anyone invest in 

an industry where that output price was trending downward and is highly volatile?  The 

response to this is, upon reflection, straightforward.  Investments depend on expected 

profitability.  If marginal production costs are falling rapidly due to technological change, 

the price may be trending downward and yet profits may be high.  Selling color 

televisions may well have remained profitable since their invention in spite of dramatic 

price reductions (due to rapid technological improvements that have reduced marginal 

production costs.) 

VIII.  Concluding Remarks  
 

This paper explores the use of low-frequency band-pass filters for describing 

long-run trends in more than 100 real mineral commodity prices over more than 100 
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years.  Our statistical approach has the advantage of allowing long-run trend rates to 

evolve gradually over time, rather than assuming that they are constant (perhaps with 

occasional structural breaks) over time.  This is a flexible way of capturing the ongoing 

‘tug of war’ between exploration, depletion, and technological change.  The objective is 

to provide a comprehensive description of long-term trends in nonrenewable resource 

prices, and to compare this description to theoretical predictions in the resource 

economics and economic development literature.    

Measuring the direction and magnitude of trends in the real prices of 

nonrenewable resources is of considerable interest to financial market participants, 

mineral and energy producers contemplating long-term investments extractive activities, 

and policy-makers alike, with wide-ranging implications for producers and consumers of 

mineral products, and their host governments.  Fundamental questions focus on whether  

real prices of non-renewable resources rise dramatically over time, signaling increasing 

economic scarcity or the converse, which lends itself to governments eschewing natural 

resource development and embracing import-substitution led industrial policy.  Policies 

and decisions that households, enterprises, and governments undertake concerning 

resource use will clearly hinge on understanding trends in non-renewable resource prices. 

The variety of LR trends of the motley collection of mineral commodities is 

astonishing, with few increasing monotonically, contrary to the prediction of the basic 

Hotelling model.  Some decline monotonically (as predicted by Prebisch and Singer), 

while others exhibit the U-shaped pattern predicted by Pindyck (1978), Heal (1981) and 

Slade (1982).  A great many change the direction of the long-term trend up to three times 

in the period from 1900 to 2011.   
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As such, there is no “general tendency” in the negative or positive direction of 

long-run mineral commodity price trends; while there are examples therein illustrative of 

the Hotelling, Prebisch-Singer, and Pindyck/Heal/Slade U-shape models and expectations 

of long term price trends, none of the seminal models emerge preeminent.  The wide 

variety of patterns in the evolution of long-term trends suggests that analysis of an 

aggregate commodity index should be undertaken with great care, if at all, and that any 

analysis of commodity prices is best performed on a commodity-by-commodity basis.  

More work will have to be done to derive the insights and construct convincing narratives 

as to why the price paths of particular mineral commodities trend stridently upward, 

downward, or vacillate sharply between epochs of growth and decline over the long term. 

Indeed, the results of the paper are illustrative of the ongoing unremitting ‘tug of 

war’ between the countervailing forces of declining resource quality, technological 

innovation, and exploration, with “exhaustion” of the topic nowhere in sight.  
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Appendix: Graphs for the 102 USGS Minerals            
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