
Division of Economics and Business
Working Paper Series

A dynamic conduct parameter model of electricity
marketer pricing behavior in the California power

exchange

Carol A. Dahl
Tyler Hodge

Working Paper 2012-15
http://econbus.mines.edu/working-papers/wp201215.pdf

Colorado School of Mines
Division of Economics and Business

1500 Illinois Street
Golden, CO 80401

June 2012

c© 2012 by the listed authors. All rights reserved.



Colorado School of Mines
Division of Economics and Business
Working Paper No. 2012-15
June 2012

Title:
A dynamic conduct parameter model of electricity marketer pricing behavior in the California
power exchange∗

Author(s):
Carol A. Dahl
Division of Economics and Business
Colorado School of Mines
Golden, CO 80401-1887
cadahl@mines.edu

Tyler Hodge
U.S. Energy Information Administration
1000 Independence Ave, SW
Washington, DC 20585
tyler.hodge@eia.gov

ABSTRACT

This paper contains a dynamic conduct parameter model to look at the pricing behavior of five power

marketers in the California Power Exchange (CalPX) on daily data for 2000. Only our previous paper

Hodge and Dahl (2012) specifically focused on just the electric power marketers. In this paper we compare

a dynamic conduct parameter with that of our earlier static model to test whether the static estimates

are biased downwards or towards not rejecting the null hypothesis of no market power. We estimate the

model using generalized methods of moments on data for each marketer. We find more evidence of collusive

behavior with the dynamic than the earlier static model estimates.

JEL codes: L10, L94, Q40, Q41

Keywords: Electricity, Conduct Parameter, Dynamic, Marketer.

∗Draft, June 2012. Corresponding author, Contact information: Professor Carol A. Dahl, Mineral and Energy Economics

Program, Colorado School of Mines, Golden, Colorado 80401 USA, email: cadahl@mines.edu phone: 1-303-273-3921, Fax: 1-

303-273-3921. The views in this paper are solely those of the authors and do not reflect the views of their affiliated organizations.



 

 2 

Introduction 

Electricity market restructuring, which began with Chile in 1982, has spawned 

liberalization of electricity markets in dozens of countries. However, with suspected price 

manipulation in some of these reformed markets, numerous industrial organization 

studies have been conducted to investigate whether evidence suggests the pricing changes 

arose from market power abuse.  

In the U.S., numerous studies have focused on the California Power Exchange 

(Cal PX) because of its extraordinary failure in 2001 along with copious amounts of 

available trading data. Previous investigations of this failure have found statistical 

evidence of price manipulation for merchant generating firms. See for example, Joskow 

& Kahn (2002), Wolak (2003), and Puller (2007). However, only our earlier paper --

Hodge and Dahl (2012)--has focused specifically on the behavior of power marketers that 

buy electricity and sell it directly into the wholesale market or to industrial consumers. In 

our earlier paper, we looked at the pricing behavior of five largest power marketers in the 

Cal PX. Using a static conduct parameter model, we only found statistical evidence that 

the largest two marketers --Duke (38% of nonutility sales) and Reliant (15% of nonutility 

sales)--were exercising market power, while we found no statistical evidence that the 

smaller marketers -- Enron (8.5 % of nonutility sales), Dynergy (8 % of nonutility sales), 

and Williams (5 % of nonutility sales)—were exercising market power. We were 

somewhat surprised by this result, since the Federal Energy Regulatory Commission 

(FERC) concluded that the flawed and complex market design allowed price 
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manipulation by Enron and other companies, Enron was actually convicted of market 

manipulation, while all the trading companies studied here agreed to pay refunds in 

California without admitting guilt. (FERC (2005)).  

Corts (1999) demonstrated that static models can produce biased results if the 

firms use dynamic pricing strategies and Kim and Knittel (2006) found the static 

conjectural variation model did not measure market power well in the California context. 

Therefore, we extend our earlier paper to determine whether the traditional static model 

for detecting market power can be improved by incorporating dynamic behavior. To 

provide a comparison, we again focus on the behavior of the same five largest power 

marketers in the Cal PX. In Section 2, we describe the econometric model of dynamic 

pricing; in section 3, we describe the generalized method of moments two-stage 

estimation technique; Section 4 contains the results of the model estimation with a 

summary of findings and implications for further research in Section 5. 

2. DYNAMIC MODEL 

We analyze pricing conduct in the California Power Exchange during 2000 using 

a dynamic version of the model based on the traditional conjectural variations approach. 

We begin with the static model based on Bresnahan (1989) developed in Hodge and Dahl 

(2012):  
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Variables in the model are on daily data unless otherwise indicated. Variable definitions 

along with expected sign of coefficient for right hand side variables in parenthesis are: 

Endogenous variables  

 Pt = California PX price 

 Cit (+) = firm i's wholesale purchase cost of electricity 

 D
tQ  (-) = Cal PX market demand 

 D C
t tQ D  (+) = interaction terms between the market demand and cooling-degrees 

itq (-) = quantity supplied by firm i.  

 C
t itD q (-) = interaction terms between firm quantity variable and cooling-degrees 

 jt
j i

q
≠
∑ = the quantity sold by all firms but firm i 

Exogenous variables used as instruments 

 C
tD (+)= cooling degrees measured as mean temperature – 65○, if mean is above 

65○, otherwise 0=C
tD .  

  H
tD (+)= heating degrees measured as 65○ minus mean temperature, if mean is 

below 65○, otherwise 0H
tD =  
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 D
te = random errors in the demand equation 

 S
te = random errors in the supply equation 

 Gt (+)= monthly heat rate of affiliated generator as a proxy for self generation cost  

 Ht (-)= Shasta Dam hydropower releases as a proxy for shifting municipal power 

purchases on the Cal PX 

 Rt (+) = weekly refinery production of gasoline as a proxy for industrial activity 

 Tt (+) = daily hours of transmission constraint as proxied by the number of hours 

the price in California's northern (NP-15) and southern (SP-15) control zones 

were not equal 

 Wt (-) = weekend dummy variable to proxy lower weekend industrial and 

commercial consumption 

 Yt (+) = California monthly employment as a proxy for California income 

In addition we use two other instrumental variables for the wholesale purchase 

cost variable. They are (1) the daily marginal fuel cost from Arizona as measured by the 

maximum hourly system lambda (the most expensive unit dispatched in a transmission 

control area during any given hour) in the Arizona Public Service Control Area (FERC 

2003a) and (2) hydropower releases from Bonneville Dam in Oregon. 

 The conduct parameter to test whether firms are exercising market power is q = 

1

n
j

j i

q
q=

∂
∂∑ , q = 0 if the firm is competitive, q = 1 if n equal sized firms are Cournot pricing, 

and q = n, if the firms are colluding and behaving as a monopolist. Hodge (2006) also 
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shows that P MC
P s

γq −  = −  
  

 or that q is related to the degree of price (P) markup 

over marginal cost (MC) where γ is the market demand elasticity and s is the individual 

firm’s market share. Thus, any value for q greater than 0 measures some degree of market 

power.  

 Corts (1999) argues that the above static models underestimates q, if the firms 

behave dynamically. Our study addresses Corts’ criticism of the standard static models 

applied to electricity markets such as above. The model that we develop adds a dynamic 

aspect of supply behavior, which allows us to estimate a more accurate conduct 

parameter.  

In our dynamic extension of Hodge and Dahl (2012), we hypothesize that the 

level of market power in the California PX, as measured by θ, varies with the level of 

expected market demand if firms are colluding. This approach is similar to the empirical 

model outlined in Borenstein and Shephard (1996), which attempts to explain the level of 

market power in retail gasoline, as measured by a price-cost margin, based on shocks to 

expected demand and cost. An important distinction between our approach and their 

approach is that they measure market power directly with a price-cost margin, whereas 

we measure market power through an estimated conduct parameter (which can be 

interpreted as an elasticity-weighted price-cost margin, as discussed above). We use the 

conduct parameter, θ, instead of directly calculating a price-cost margin because we only 
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have data on average not marginal costs (the relevant cost when measuring market 

power). 

As Borenstein and Shephard (1996) discuss, this approach is derived from the 

theoretical model developed by Rotemberg and Saloner (1986) in which they reason that 

colluding firms (behaving as a monopolist whether organized as a cartel or tacitly 

colluding) require an incentive to encourage compliance with the pricing arrangement. 

Specifically, the group of firms chooses the price which will maximize total profits while 

also making sure that any individual firm considering deviation from the pricing 

arrangement realizes that the present value of current and future profits from 

“cooperating” exceeds the sum of the current period profit the firm may obtain from 

deviating and the present value of all future profit realized after the arrangement falls 

apart. Under such an arrangement, Rotemberg and Saloner illustrate that maintaining 

high prices under a collusive regime is easier when demand is expected to increase. This 

result occurs because firms realize higher future demand corresponds with higher future 

collusive profits. Conversely, the current gain from deviating is higher and the future loss 

is relatively smaller when demand is expected to decline. Colluding firms should be able 

to more easily maintain excessively higher prices when demand is growing. Thus, 

changes in the level of market power should be positively related to changes in expected 

demand. 

As in Borenstein and Shephard’s (1996) analysis, we model this argument by 

assuming that market power, measured in our case by the conduct parameter, varies 
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depending on the level of expected demand in the next period, ( )D
tQE 1+ , while also 

controlling for the current level of demand, D
tQ : 

( ) D
t

D
t QQE 2110 qqqq ++= +     (2) 

We substitute the conduct parameter specification into the static model (1) to get 

the following system of equations: 
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 (3) 

In this dynamic model, demand is still determined myopically, but supply (and the 

level of market power) depends on future expected market conditions.2 The estimated 

coefficient θ1 in our model is expected to take on a positive value if the firms are indeed 

colluding. Furthermore, Corts’ (1999) criticism implies that the dynamic θ calculated 

from Eq. (3) should be larger than the θ estimated in the static model, if the group of 

firms is indeed colluding. We compare our earlier static model results to the results from 

this expanded model that captures firms’ dynamic market demand expectations.  

                                                 
2 Puller (2007) notes that a full structural model would require a much more complicated but empirically 
intractable model that incorporates a forward market, two sequential auctions, and a host of regulatory 
uncertainties.  
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3. Estimation Methodology 

Obtaining accurate measures of the conduct parameter coefficients in the static 

model (θ) and the dynamic model (θ0, θ1, and θ2) requires an appropriate estimation 

technique. The endogeneity of price and quantity in both the demand equation and the 

supply relation require a system's estimation technique since the error term for each 

individual equation is correlated with a regressor variable. Furthermore, the supply 

relation coefficients θi and 1b  require estimates of the parameters, 10  and γγ , from the 

demand equation in order to be identified. Coefficients that appear in both equations must 

be restricted to take on identical values during estimation so that the conduct parameter 

can be separately estimated.  

The conduct parameter coefficients appear multiplicatively in the supply relation 

of both models, excluding the possibility of using a linear estimator, and OLS would 

produce biased coefficient estimates due to the existence of endogenous variables on the 

right-hand side of the equations. Instead we must directly minimize a least-squares 

objective function. One popular method of constructing the objective function is the 

generalized method of moments (GMM). This technique for calculating estimated 

parameters when confronted with a nonlinear model is popular because the estimators are 

asymptotically consistent as long as the model is correctly specified. With daily data over 

twelve months, the relatively large sample size should ensure fairly accurate estimates.  
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For both the static model (1) estimated earlier by Hodge and Dahl (2012) and the 

dynamic model (3), we can represent the supply equation and the demand equation as a 

system of two equations (i = 1, 2) in the following compact form: 

( ) iiii h εXy += b  

where yi is the vector of left-hand side variables for each of the two equations. These 

variables are shown as a generalized function of the regressor variables, Xi, in each 

equation and the common set of parameters, b . Some of the variables in Xi are 

endogenous, so we will primarily be working with the related matrix of instruments, Z. 

As Greene (1997) describes, the GMM method is derived from the following standard 

econometric assumption that regressor variables are uncorrelated with the error term: 

( ) 0z =ittE e  

where zt is the vector of instrument values for observation t and εit is the associated 

observation-specific residual. The corresponding sample moment condition for equation i 

is: 

( )[ ] 0xz =−∑
=

T

t
tiitt hy

T 1
,1 b  

where, in place of the residual, we now have yit as a nonlinear function of the parameters, 

b , and the regressor variables, xt. 

If we were estimating a single equation or each equation in the system 

individually, the sample moment condition would yield a single set of estimated 

parameters (in the case of a single linear equation, the sample moment condition results 
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in the standard OLS system of normal equations). When estimating a system of equations 

with cross-equation parameter restrictions, the goal is to fulfill an assumption similar to 

the single equation case: 

( ) 0=



 ′′′ jiE εZεZ  

where Z is the matrix of instrumental variables, which are common for both equations i, j 

= 1, 2, and the prime symbol indicates the transpose of a particular matrix. However, if 

the system is over-identified with more instruments than endogenous variables (as our 

system is), these sample moment conditions will likely yield multiple solution estimates. 

Instead of equating each one to zero, the GMM method attempts to minimize an objective 

function, Q, similar to the sample moment conditions: 
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where Σij is the ijth partition of the error variance-covariance matrix. This matrix is 

calculated using the residuals obtained from an initial two-stage least squares estimation. 

Note that this is a general covariance matrix that allows for any heteroscedasticity and 

autocorrelation in the data. 

An additional variable for expected demand, ( )D
tQE 1+ , in now included in the 

dynamic supply relation. Electricity suppliers likely base their demand expectations on 
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forecasted weather conditions—however, historical data on weather forecasts is not 

readily available. Instead, we follow the example of Borenstein and Shephard (1996) and 

assume that firms base their expectations of future demand on historical trends. We use 

an ARIMA modeling procedure to obtain predicted values for next-period's expected 

market demand by estimating the following AR equation for quantity demanded in the 

California PX: 

∑
=

−+ ++=
L

i
titit QQ

0
01 eaa     (4) 

The specific value for the total number of lags L (i.e., how many prior periods are 

used to form expectations) is determined empirically by selecting the number of lags that 

best fits the data based on the Schwartz Criterion (Enders 1995). We estimated 

autoregressive models (4) for the quantity demanded using lags ranging from 1 to 28. The 

model with the lowest Schwarz Criterion statistic was selected as the best fitting model. 

The formula for this statistic is given by (Enders 1995): 

T
Tk

T
e

TSC t lnln
2

+= ∑  

where et are the individual estimated residual terms, T is the number of observations, and 

k represents the number of parameters estimated in the particular model. The SC model 

selection procedure indicated that a model with L = 8 lags (just over one week of 

observations) was most appropriate for modeling market demand expectations. The 
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variable for next-period expected demand was calculated as the fitted values from this 

model shifted back one day (i.e., ( ) 1
ˆ
+= t

D
t QQE ). 

All of the statistical and econometric analysis for this paper was completed using 

SAS software. SAS first obtains GMM parameter estimates using two-stage least squares. 

These estimates act as starting values for the GMM estimation process, which uses the 

Gauss-Newton method to search for the minimum objective function value. Each 

iteration in this minimization process consists of changing those parameter estimates that 

have the largest (negative) impact on the objective function. These iterations continue 

until the improvement in the objective is smaller than 0.001. Given the nonlinear 

characteristics of our model, there is the possibility that a given solution provided by SAS 

may not represent the global optimum set of parameter estimates. However, we 

experimented with manually selecting various parameter starting values with various 

versions of the model and always obtained estimates very close to the estimates from 

SAS’s default GMM process.  

We perform hypothesis tests on the dynamic conduct parameter in order to 

describe the market structure within which the five firms are operating and to test for any 

pricing abuses. If the firms are acting competitively then the conduct parameters in both 

the static and dynamic models should not be significantly different from zero. Any level 

of market power should cause us to reject the null hypothesis that the firms act 

competitively (i.e., calculated θ = 0). If so, we next test for the possibility that each firm 

is behaving as a Cournot firm (θ = 1). In addition, as Rotemberg and Saloner (1986) 
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argue, we should expect a positive relationship between expected demand and the 

conduct parameter (i.e., a positive value for θ1 in the supply relation). 

4. Empirical Results 

We estimate the equations in model (3) above using daily data from January 1, 2000 – 

December 31, 2000 that was used in Hodge and Dahl (2012). Figure 1 shows the price 

volatility during this period.  
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Figure 1 Daily California Power Exchange Prices 

(Source: University of California Energy Institute, 2006) 
 

Table 1 gives descriptive statistics for the model variables. 
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Table 1 Descriptive Statistics 

 
    # of    Standard 
    Obs Mean Deviation 
Quantity Supplied (Mwh/day)    
 Duke 309 44,056 27,920 
 Dynegy 364 7,862 5,909 
 Enron 365 8,303 5,017 
 Reliant 366 15,062 7,560 
 Williams 344 4,742 4,203 
 All five firms 366 73,018 35,252 
Price ($/MWh)    
 Duke 309 76.55 73.14 
 Dynegy 360 101.58 93.57 
 Enron 365 88.14 75.52 
 Reliant 365 89.18 73.72 
 Williams 344 84.41 65.72 
 All five firms 366 80.02 65.78 
Cost ($/MWh)    
 Duke 308 108.72 124.90 
 Dynegy 337 97.08 75.40 
 Enron 366 102.20 106.32 
 Reliant 328 94.46 73.34 
 Williams 321 114.62 113.56 
 All five firms 366 101.71 92.48 
Quantity Demanded (MWh/day) 366 514,334 54,271 
Expected Demand (MWh/day) 359 513,685 51,735 
Employment (thousands) 366 16,035 147 
Refinery Production (bbls/day) 366 7,361 605.87 
Shasta Dam Releases (cubic feet/sec) 365 9,638 8,466 
Cooling Degrees 366 1.98 3.04 
Heating Degrees 366 3.92 4.45 
Hours of Transmission Constraint 366 12.31 7.03 

Bonneville Dam Releases (cfs) 366 13,891 4,882 
Arizona Public Service Lambda ($/Mwh)              366 36.65? 15.63 
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We analyze of the dynamic extension of the conduct parameter model by 

estimating the demand and supply equations (3) for each of the five power marketers. 

The results are shown in Table 2 along with the results from the earlier static model taken 

from Hodge and Dahl (2012). The shaded cells are the p values for the coefficient.  
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In many cases, both the static and dynamic models conform to our preconceived 

expectations. In the inverse residual demand equation, the coefficients for heating degree 

days, employment, and refinery production are always positive and all are significant at 

better than a 10% level. The coefficients for weekend transaction, hydropower releases, 

and quantity are almost always negative but the significance levels aren't always as strong 

as for the previous three variables. The coefficient on cooling degree days times quantity 

demanded is positive but is not significant in three cases. A puzzling result is the 

universal negative coefficient on cooling degree days. It is significant for 70% of the 

coefficients but more often significant for the static model. The total coefficient on 

cooling degree days is α2+γ1Qt
D. If we compute this total effect, it is negative for half of 

the estimates, whether we only include coefficients at the 10% level or better or not, but 

most of the negative values are on the static model. In general, the dynamic model 

performs somewhat better in terms of the number of expected significant coefficients.  

In the inverse supply equation, the coefficient on cost is always positive and 

significant. However, only for a couple of firms do transmission constraints have a 

positive effect on price, and only in the dynamic model is the effect significant at better 

than a 10% level. The heat rates for affiliated generators are also mixed. With no 

affiliated generator, we do not include the heat rate for Enron. For the other firms, it is 

only positive and significant for Dynegy.  

The supply relation is where we observe the dynamic pricing adjustments to the 

Bresnahan (1989) model. For the static model, we only found significant evidence 
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rejecting competitive behavior (θ=0) for the two largest marketers: Duke and Reliant. 

Both had conduct parameters near 0.5 that were significant at a 7% level. For these two 

marketers, only for Duke could we not reject that it was behaving as a Cournot player 

(θ=1). See Table 3, columns 3 and 4 for these hypothesis tests. 

Table 3: Hypothesis Tests for the Conduct Parameters for the Static and Dynamic Models 
  Static t for t for Dynamic χ2 for χ2 for Non_util* 

Power Marketer 

Conduct 
Parameter 

H0: θ = 
0 

H0: θ = 
1 

Conduct 
Parameter 

H0: 
θDyn = 

0 

H0: 
θDyn 
= 1 

Market 
Share 

Duke Energy 0.54 1.810 -1.51 7.79 4.98 0.91 0.380 
Dynegy Power 
Mktg. -7.59 -0.760 -0.87 51.47 7.01 4.31 0.080 

Enron Power 
Mktg. 0.07 0.190 -2.43 -0.34 2.56 1.10 0.085 

Reliant Energy 0.48 1.800 -1.96 1.45 4.14 0.27 0.150 
Williams Energy -0.29 -0.670 -3.02 -1.25 0.57 0.38 0.050 
Notes: Critical t value is 1.96 for 5% significance and 1.645 for 10% significance. Critical 
χ2[1] value is 3.84 for 5% significance and 2.71 for 10% significance. *California non-utility 
sales comprised less than 25% of total electricity sales in 2000. N/A indicates tests for 
Cournot behavior are not conducted where competitive behavior is not rejected. 

 

For the dynamic model, we compute the dynamic conduct parameter: 

D
t

D
t

Dyn QQE 2110 )( qqqq ++= +  shown in Table 3, column 5. In order to check whether or 

not each linear combination is statistically significant, we apply the Wald test to our 

estimation results. The Wald statistic is calculated as: 

( )[ ] )1(~)ˆ()ˆ( 212 χθRRXXRθR ′′′= −sW  
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where ( ))(  ),(  ,1 1
D
t

D
t QEQE +=R , ( )210

ˆ  ,ˆ  ,ˆˆ qqq=θ , X is the matrix of observations, and s2 is 

the square of the model standard error. This statistic follows the Chi-square distribution 

with one degree of freedom. The Wald statistics are shown in the sixth and seventh 

columns of Table 3.  

As Corts predicted, the dynamic model shows more evidence of non-competitive 

behavior than the static model. While we still see no statistical evidence that Enron and 

Williams, who are among the smaller marketers, are behaving non-competitively, now 

we can reject the null of competitive behavior for Duke, Reliant, and Dynegy. In 

particular, Dynegy has the largest, and most significant, dynamic conduct parameter, in 

contrast to the negative conduct parameter estimated with the static model. For each of 

these three, their conduct parameter is larger, and for Duke and Reliant, we cannot reject 

Cournot behavior.  

Another indicator that can be used to check for collusion is a positive sign on the 

estimated θ1 coefficient as argued by Rotemberg and Saloner (1986). However, we find 

no statistical evidence that θ1 is positive.  

Joskow and Kahn (2002) suggest "overwhelming evidence" of pricing power for 

generators in California in 2000 from their simulation work and the several other 

comprehensive studies with varying techniques that they reviewed. Similarly, Wolak 

(2003) computes inverse price elasticities from proprietary hourly bid data by the 5 

largest generators on CAISO and concludes it was in the generator's interest to exercise 

market power during this period. Although we do not find "overwhelming" evidence of 
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market power for generators associated marketing companies, we find stronger evidence 

with a dynamic than our earlier static pricing model. It could be that affiliated marketers 

are not exercising as much pricing power with more of the rents being takend by the 

generators. Alternatively, since we do not have hourly but daily transaction data for the 

marketers, aggregating peak with with off-peak periods when market power is low may 

be masking some of the pricing power behavior. 

Our results are fairly consistent with Puller (2007), who considered behavior for 5 

large non-utility generators in California for daily data from 6 - 7 p.m. for three different 

periods from 1998-2000. He estimated residual demands and combined them with 

marginal cost to simulate various market structures for California 18 including 

competition, Cournot, and monopoly behavior data as well as estimating conduct 

parameters. For four of his generating companies, we have estimates for their marketing 

companies. He concluded that Duke and Reliant pricing were consistent with a Cournot 

model, which we could not reject for their marketing companies. He found Dynegy 

displayed the most aggressive market power with a conduct parameter statistically greater 

than 1 as did we for their marketing company. The only inconsistency between the two 

studies is that Puller could not reject Cournot behavior for AES, while we did not reject 

competitive behavior for their marketer - Williams.  

5. CONCLUSION 

In this paper, we were interested in determining whether the five largest power 

marketers selling electricity to the California Power Exchange in 2000 were manipulating 
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prices above competitive levels. Our previous research using a static conduct parameter 

found some evidence of market power but less than expected given the strong 

conclusions from studies considering market power for non-utility generators. Since 

earlier work suggested that estimation using a static model might bias the estimates for 

the conduct parameter, we developed a dynamic model to re-estimate the conduct 

parameter with dynamic expectations.  

As in the static case, Williams and Enron were classified as competitive firms 

with conduct parameters not significantly different from zero, while Duke and Reliant 

appeared to be pricing in a Cournot fashion. The calculated dynamic conduct parameter 

for Dynegy was now significantly greater than one suggesting the most aggressive 

pricing behavior of the five. Our results were supportive of the Corts (1999) conjecture 

that static models underestimate the conduct parameter 

Policymakers such as the Federal Energy Regulatory Commission (FERC) could 

use this type of econometric analysis to provide “red-flags” indicating the need for a 

more intensive investigation of pricing practices. In fact, FERC has improved its 

collection of wholesale electricity transactions through its Electric Quarterly Report data 

collection system, which evolved out of its original investigation of manipulation of 

prices in the California energy markets. This system now allows power marketers to 

report transactions online, and the data include more detail about the type of transaction 

and its delivery location. Knowing the time of day of the transaction would also be 

helpful as market power should vary considerably over the load cycle. 
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The model developed in this paper and the associated empirical results offer a 

number of avenues for future research. Wolak (2003) and Puller (2007) did not find 

evidence of collusion but rather concluded that generators were individually taking 

advantage of market conditions to exercise market power. Future work could explore 

whether groups of marketers were colluding or not. 

This paper limited pricing strategies to the standard strategies examined in a 

conduct parameter model: perfect competition, Cournot behavior, or monopoly. 

However, alternative models could also be developed to examine whether a Stackelberg 

or dominant firm-competitive fringe market structure might have been more relevant for 

power marketers in the California PX.  
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