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ABSTRACT

The recent push for a federal energy policy that could substantially change electricity prices in the U.S.

highlights the need to obtain accurate residential electricity demand estimates. Many electricity demand

estimates have been obtained based on the assumption that consumers optimize with respect to known

marginal prices, but increasing empirical evidence suggests that consumers are more likely to respond to

average prices. Under this assumption, this paper develops a new strategy based on GMM to estimate

household electricity demand. Our approach allows a national-level demand estimation from publicly avail-

able expenditure data and utility-level consumption data, complementing studies that use individual billing

data which are richer yet often proprietary. We estimate the price elasticity near -1, which is at the upper

end (in magnitude) among the estimates from previous studies. We apply our elasticity estimates in a U.S.

climate policy simulation to determine how these elasticity estimates alter consumption and price outcomes

compared to the more conservative elasticity estimates commonly used in policy analysis.
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1 Introduction

The recent focus of the U.S. Congress on federal energy policies such as a carbon cap-and-

trade program or a carbon tax, which could substantially alter the electricity market, has

elevated the importance of characterizing electricity demand behavior. A growing body of

literature on the incidence of such policies has emerged (e.g., Burtraw et al. 2009; Hassett

et al. 2009; Shammin and Bullard 2009) and one of the key parameters in these incidence

analyses is the price elasticity of residential demand for electricity.

Studies on residential electricity demand have been conducted for many decades. These

studies differ significantly in data and methods used and provide a wide range of estimates

for the price elasticity of demand, from zero to less than -1.1 Most of the studies can broadly

be classified into one of three groups – those based on nationwide data aggregated to the

state or region level, those using household level data with imputed price and quantity

data, and those using detailed and often proprietary household level data. This paper

develops a new empirical strategy based on the Generalized Methods of Moments (GMM)

to estimate residential electricity demand using publicly available household level data

under the assumption that consumers respond to average prices. We believe that this

proposed method offers several desirable features not found in the three common types of

studies on electricity demand.

The first set of studies uses nationwide panel data, often aggregated at the state level,

and have the advantage of being able to provide regional elasticities, both long-run and

short-run, across the nation (e.g., Houthakker 1980; Maddala et al. 1997; Bernstein and

Graffin 2005). However, one should use caution when applying elasticity estimates from

these aggregate studies to policy analysis at the household level, as is often done in incidence

analyses of energy and climate policy. As Dubin and McFadden (1984) point out, demand

estimations using aggregate data may be subject to misspecification bias due to aggregation

over electricity usage and price.

The second set of studies employs household-level data that are also public and na-

1Espey and Espey (2004) provide a meta analysis on over 100 studies and Alberini et al. (2011) contains

a good comparison of 17 more recent studies.
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tional in scope but some important information such as household level prices are often

missing. Branch (1993) uses Consumer Expenditure Survey (CEX) from the Bureau of

Labor Statistics and a recent study by Alberini et al. (2011) is based on the American

Housing Survey. Both national surveys contain household electricity expenditure but not

price and quantity information. In Branch (1993), the state-level average electricity price is

used as the household-level price while Alberini et al. (2011) uses average prices of a given

utility. Both of these studies then impute the quantity consumed based on expenditure and

the employed average price. As we discuss below in more detail, because of the nonlinear

structure of price schedules commonly used in retail electricity, the estimates based on

imputed data could suffer bias from both measurement error and simultaneity.

The third set of studies also employs household-level data but different from the second

set, they often involve some piece of private electricity billing or rate structure informa-

tion (e.g., Barnes et al. 1981; Dubin and McFadden 1984; Herriges and King 1994; Reiss

and White 2005; Borenstein 2009; Ito 2011). These studies are typically constrained to

geographically narrow regions because there is no national data set of electricity rate struc-

tures or of household-specific billing information.2 Given regional household heterogeneity,

one has to be cautious in applying estimates from these area-specific studies to all areas of

the country. On a more practical note, getting geographically specific rate structure data

appropriately matched to individual households for multiple areas or obtaining household

billing information is often infeasible because of the diversity of rate structures across the

country and the proprietary nature of individual billing data.3

More importantly, the first four of the six aforementioned studies using rich household-

level data are based on the assumption that households know their marginal rate schedules

and optimize accordingly. Although assuming that households respond to marginal prices

2An exception to this is Barnes et al. 1981. This study uses data from 26 major metropolitan areas

and matches that data to rate structure information obtained for each city individually. Nevertheless, it

assumes that consumers respond to marginal prices.

3For example, in Reiss and White (2005), a study using rate structure data from Southern California,

electricity rates had to be matched up indirectly with individual household data. Applying such techniques

to multiple geographic regions would quickly become intractable.
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is theoretically consistent in a utility-maximizing framework, it may not be a realistic

representation of consumer behavior in electricity markets. The first reason for this is that

many electric utilities, like some other public utilities, offer multi-part tariff pricing where

the marginal price for a household depends on the household’s consumption. Deciphering

an electricity bill to determine the rate structure is often not straightforward, and usually

the bill arrives after the period of consumption has concluded. Thus, in many instances

consumers may not be aware of their actual rate structure or their marginal price. Second, it

may be unrealistic to assume that consumers can monitor and control their consumption at

any given point in time during a billing period. If this is the case, then even if consumers

know the rate structure, it is difficult for them to optimize consumption based on the

marginal price.4

Given these attributes of residential electricity consumption, the assumption that con-

sumers respond to marginal prices is likely to be violated for the average consumer. In-

deed, this has been supported by increasing empirical evidence. Using data from seven

Ohio utilities with decreasing-block rate schedules, Shin (1985) finds evidence that con-

sumers respond to average prices from the utility bill rather than marginal prices. Based

on residential billing data from Southern California Edison, which implements increasing-

block pricing, Borenstein (2009) finds no evidence of bunching around the points where the

marginal price increases, contrary to what a model of perfectly informed and optimizing

consumers would imply.5 In addition, he shows that the average price is a better indicator

of consumer demand response than the marginal price. A recent paper by Ito (2011) using

household billing data from two utilities in Southern California obtains the same finding

that consumers are more likely to respond to average prices than to marginal prices.

4Without any knowledge of the rate structure or an ability to control usage, consumers could not

accurately respond to average prices either. However, given information provided in electricity bills, we

believe it may be more plausible that consumers are acting “as if” they were responding to average, rather

than marginal, price.

5If consumers were responding to marginal prices, then in a multi-part tariff rate structure one would

expect to see a concentration of households at consumption levels just below the cut-off points for the rate

change. Instead, Borenstein (2009) finds a much smoother distribution of consumption.
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Our study contributes to the literature by developing an empirical strategy using GMM

that allows demand estimation to be based on publicly available data sets at the state

or national level. The estimation in the paper is based on Consumer Expenditure Survey

(CEX) supplemented with state- and utility-level data from the Energy Information Admin-

istration (EIA). Though the CEX provides only expenditure data, our empirical approach

permits estimations of household-level demand functions without observing household elec-

tricity usage or price schedules. However, unlike existing studies using household-level data,

our estimation strategy neither necessitate individual billing data nor require imputation

of price and quantity data.

We find a near unitary price elasticity of demand and a rather inelastic income elas-

ticity of demand (0.11) in our baseline model. These estimates are robust to changes in

specifications and data alterations. Our price elasticity estimates are consistent with the

notion that consumers are targeting particular total bill values, an idea that is perhaps

not all to unrealistic given consumers limited ability to precisely control usage and to fully

understand rate structures. In addition, our estimate of price elasticity is at the upper end

(in magnitude) among a large set of price elasticity estimates using household-level data.

Our price elasticity estimates are not, however, unprecedented. Using Residential Electric-

ity Consumption Survey (RECS), Metcalf and Hassett (1999) obtain estimates from -0.73

to -1.13 for households with electric heat and almost zero for those who heat with natural

gas.6 Similarly, based on data in 50 largest MSAs, Alberini et al. (2011) provide a price

elasticity estimate of -0.74 in the short-run from a partial adjustment model.

Our estimates are significantly larger than studies that use household-level data and

are based on the assumption of marginal price response (e.g., Barnes et al. 1981; Dubin

and McFadden 1984; Herriges and King 1994; Reiss and White 2005). The estimates range

from -0.02 to -0.55 in these four studies. As we demonstrate below, the assumption of

6RECS, conducted by the Energy Information Administration (EIA), contains both expenditure and

consumption data from billing records for a small number of households. So the average price during a

billing cycle can be calculated at the household level. In addition to the smaller sample size compared to

CEX, the location information is only available for the four most populous states in RECS.
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marginal price response could lead to smaller elasticity estimates (in magnitude) than the

assumption of average price response.

With a focus on testing what price consumers response to, the novel studies of Boren-

stein (2009) and Ito (2011) provide elasticity estimates under both assumptions. Their

elasticity estimates with respect to the average price, -0.10 to -0.20 are generally smaller

in magnitude than ours. The estimates from Borenstein (2009) vary noticeably across ad-

jacent time periods from 2000 to 2006 with the largest estimate in magnitude being -0.96.

In Section 5.3, we provide a lengthy discussion on why our estimate may differ from these

two studies, despite sharing the assumption of average price responsiveness.

The remainder of the paper is organized as follows. In section 2, we present our empirical

method and in section 3, we discuss the data used. Section 4 presents a Monte Carlo

analysis to examine our empirical method. The results of the estimations and comparisons

to previous studies are discussed in section 5. Section 6 conducts policy analysis simulations.

In the final section we give concluding remarks.

2 Empirical Strategy

Our empirical framework is set up based on the CEX data. Although CEX provides

a national representative sample, it does not have information on electricity price and

quantity. Rather, it reports monthly household expenditure on electricity. As noted above,

some previous studies using CEX data, such as Branch (1993) and Metcalf and Hassett

(1999), have used monthly state average prices from the EIA as the price variable and

constructed the quantity variable by dividing expenditure by the state average price, as

we will do for one version of our model. Although this method is straightforward, the

estimates could be biased due to at least two sources: measurement error and simultaneity.

Measurement error arises because the average price faced by a given household will depend

on its quantity consumed and, thus, will not typically be the same as state-average price

given by the EIA, while the simultaneity issue comes from the fact that household electricity

usage and the price for that level of usage are determined at the same time.

To illustrate these challenges, assume that the underlying demand function takes the
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commonly used double-log form in the literature on electricity demand:

lnqist = βlnpist + xistγ + eist, (1)

where t is the month index, s the state index, and i the household index. qist is the quantity

of electricity used by household i in state s and month t while pist is the average price for

that household in month t. Under non-linear price schedules, the average price depends

on the quantity, i.e., pist is a function of qist. The vector xits contains other variables that

affect electricity demand such as household demographics, appliance holdings, and weather

conditions. The final variable, eist, is the demand shock and is assumed to be normally

distributed with mean zero and var(eist)=σ2
e .

Without observing both pist and qist, one could apply the naive method, taken before in

the literature, that uses state-average price p̄st and imputed quantity q̄ist = cist/p̄st, where

cist is monthly household expenditure, to replace quantity and price variables in equation

(1). The equation would become

lnq̄ist = βlnp̄st + xistγ + (lnq̄ist − lnqist) + β(lnpist − lnp̄st) + eist

= βlnp̄st + xistγ + [ln(cist/p̄st)− ln(cist/pist)] + β(lnpist − lnp̄st) + eist

= βlnp̄st + xistγ + (1 + β)(lnpist − lnp̄st) + eist

= βlnp̄st + xistγ + νist, (2)

where q̄ist again is the imputed individual quantity base on state-average price. vist is the

composite error term. If one were to estimate (2) taking vist as the error term, the estimates

on both β and γ could be biased for two reasons. First, since the error term vist includes

state average price variable p̄st, lnp̄st is endogenous. Second, because demand factors xist

affect electricity usage qist, which in turn would determine the average price paid by the

household pist, xist is also endogenous due to the inclusion of pist in the error term. Because

of the large number of endogenous variables in the equation, it would be impractical to

use instrumental variable methods. In addition, the a priori direction of bias from OLS

estimation is unknown: both p̄st and xist are correlated with the error term and it is unclear

what direction the partial correlation between (lnpist− lnp̄st) and the explanatory variables

take.
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We develop a new empirical strategy based on the generalized methods of moments

(GMM) to estimate the demand function with the expenditure data from CEX. Our strat-

egy also necessitates data on average household electricity consumption at the utility level,

which are publicly available from EIA. Rather than using all households from CEX, Our

main analysis is conducted on households for which we can identify the utility company

that serves the household. This is because our method requires the specification of the

average price schedule, which could vary by utility company.

We use u to denote a utility company in the following discussion. Recall that since we

do not observe either price or quantity at the household level, we cannot take equation (1)

directly to the data. Instead we further specify the average price schedule faced by the

household served by utility u as the following:

lnpiut = αulnqiut + ziutδ + εiut, (3)

where αu is the utility specific slope for the price schedule and ziut is a vector of observed

variables that shift the price schedule, such as cost shifters, month dummies and utility

dummies. This specification allows both the intercept and the slope of the average price

schedule to vary across utilities. εiut is the approximation error and is assumed to be

normally distributed with mean zero and variance var(εiut)=σ2
ε .

The household electricity usage and average price are determined by the demand equa-

tion and the price schedule. Solving for qiut and piut from equations (1) and (3), we get:

lnqiut = xiutγ/(1− βαu) + ziutδβ/(1− βαu) + (eiut + βεiut)/(1− βαu). (4)

lnpiut = xiutγαu/(1− βαu) + ziutδ/(1− βαu) + (αueiut + εiut)/(1− βαu). (5)

Given that the total expenditure ciut = qiutpiut, the above two equations allow us to express

the total expenditure in logarithm as the following:

lnciut = xiutγ(1 + αu)/(1− βαu) + ziutδ(1 + β)/(1− βαu)

+[(1 + αu)eiut + (1 + β)εiut]/(1− βαu). (6)

Since we have data on electricity expenditure, the equation above provides us with

the basis for the first set of moment conditions. Define the predicted value of the log
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expenditure as:

lnĉiut = xiutγ(1 + αu)/(1− βαu) + ziutδ(1 + β)/(1− βαu). (7)

The first set of moment conditions is given by:

Ei,u,t

(
[xiut ziut]

′(lnciut − lnĉiut)
)
= 0. (8)

Recognizing that some variables, such as month dummies and state dummies, are common

in both xiut and ziut, we write the moment conditions this way to save notation. In essence,

these moment conditions match the predicted expenditures (in log) with the observed ones.

The first set of moment conditions alone does not provide enough restrictions to identify

the model parameters. Intuitively, one cannot separately identify the demand and price

functions with only data on expenditures.

Taking advantage of average household electricity quantity at the utility level, available

from EIA and denoted by q̄ut, we construct the second set of moment conditions, which

match the average quantity with the predictions from our model. From equation (4), the

expected value of electricity usage for a household, q̂iut, is given by:

q̂iut = E(qiut) = exp
(
xiutγ/(1−βαu)+ziutδβ/(1−βαu)+0.5(σ2

e +β2σ2
ε )/(1−βαu)

2
)
, (9)

where the last term in the parenthesis is half of the variance of the composite error term

in equation (4).7 Define ˆ̄qut as the average of for all households in utility u and month t

(i.e., ˆ̄qut =
∑I

i E(qiut)/I). Based on E[qiut − q̂iut|xiut, ziut] = 0, the second set of moment

conditions can be constructed as:

Ei,u,t

(
[xiut ziut]

′(q̄iut − ˆ̄qiut)
)
= 0. (10)

Although the number of moment conditions constructed so far is larger than the number

of model parameters, the standard deviations of the two errors terms, σ2
e and σ2

ε , cannot be

7Given that eiut and εiut are independent normally distributed random variables, then lnqist is normally

distributed. This implies that qiut is log-normally distributed. Equation (9) is thus the expected value of

a log-normally distributed variable.
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separately identified given that they both enter moment conditions only through the last

term in equation (9). We add another set of moment conditions based on the variance of

errors in predicting log expenditure. Following equation (6), we get

Ei,u,t(lnciut − lnĉiut)
2 − [(1 + αu)

2σ2
e + (1 + β)2σ2

ε ]/(1− βαu)
2 = 0. (11)

We stack the three sets of moment conditions and use an iterative GMM procedure to

estimate all the model parameters. In obtaining the starting values for the GMM procedure,

we first estimate equations (1) and (3) using 2SLS where we take the utility-level average

prices as the price variable for all the households in the utility and then use this price

variable and household expenditure to impute household quantity. We use the identity

matrix as the initial weighting matrix and construct the efficient weighting matrix based

on parameter estimates from the first iteration.

The underlying model of our analysis assumes that consumers respond to average prices

in their electricity usage decisions. The interaction between the household demand function

and the average price schedule determines monthly electricity usage and average price at

the household level. In addition to the challenge of not observing either household quantity

or price directly, we also face the common identification challenge of simultaneity in the

empirical demand and supply analysis: quantity and price are determined simultaneously.

To deal with the simultaneity problem, our procedure, cast in a system of two equations

(i.e., equations (1) and (3)), essentially uses demand side variables such as household de-

mographics and appliance holding to serve as instruments for the quantity variable in the

price equation (3), and uses cost shifters such as shares of fuel types in electricity generation

and their interactions with fuel cost to serve as instruments for the price variable in the

demand equation (1).

It is worth pointing out that while the nature of the CEX gives us some longitudi-

nal information, the relatively short time-span analyzed and the lack of detailed product

information does not give us sufficient information to estimate the relationship between

electricity prices and appliance replacement.
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3 Data

As discussed above, the primary source of data for our demand estimation comes from

the consumer expenditure survey (CEX), monthly over the period 2006 - 2008. The CEX

collects data through quarterly interviews on a random sample of about 7,500 households.8

Importantly, the survey asks respondents to provide detailed expenditure information, in-

cluding monthly electricity expenditures, though does not address quantity or price infor-

mation for electricity use. An important caveat of the CEX data is that it contains missing

values for a large number of observations and imputed values are often provided for these

observations. We exclude these observations in our analysis since the imputation would

not be consistent with our estimation approach.

The CEX survey also collects information on household demographics, housing type,

appliance holdings, and income. We use this data, combined with relevant cooling degree

days (CDD) and heating degree days (HDD) as demand shifters (xiut).
9 A list of the

variables we use as demand shifters, along with summary statistics, is provided in Table 1.

In order to improve the accuracy of estimates derived from our empirical methodology,

we take several steps to refine the examined sample. These refinements are primarily

made to increase the validity of second set of moment conditions. Recall that the second

set of moment conditions are based on setting population-average electricity consumption

equal to the derived sample-average consumption. The EIA provides average household

electricity consumption at the utility level.10 Ideally, one would like to form the second

8The survey program also conducts a diary survey, in which respondents record all expenditures. How-

ever, we only use data from the program’s quarterly interview survey. For more information on how the

survey is conducted and the data available through the survey see http://www.bls.gov/cex/.

9CDDs and HDDs are defined as max(Average Temperature in Fahrenheit - 65, 0) and max(65 - Average

Temperature in Fahrenheit, 0), respectively. Average temperature data are city-specific temperatures

provided by the University of Dayton website. The specific cities used are those matching the PSU-state

combination described below.

10EIA form 861 provides annual residential electricity consumption and the total number of residential

customers served for each utility. EIA form 826 provides monthly residential electricity consumption for

each utility. Together, they imply monthly average household consumption at the utility level.
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set of moment conditions by matching the derived sample-average consumption from CEX

respondents living in a given utility service territory to the average consumption of that

utility as computed from the EIA data. Unfortunately, the CEX does not give sufficiently

detailed geographic identifiers to perform such a direct matching process.

The most geographically detailed information provided in the CEX data is the state the

respondent resides in and, if the respondent comes from a primary sampling unit (PSU), the

PSU they live in. A PSU is a group of counties, similar to metropolitan statistical areas,

and constitutes the sampling frame from which housing units are chosen.11. The CEX

public data only identifies 21 large PSUs (population over 4 million), some of which cross

state boundaries. They are plotted in Figure 1. Given information about utility service

territories, we can then refine our sample by considering only those respondents who reside

in PSU-state combinations that are mostly serviced by a single utility. To do this we first

overlay utility service areas on the PSU map to determine which utilities are operating in

each of the PSUs as the geographic unions of PSUs and utility service territories. To make

sure that the majority of observed households in a given PSU-state region are covered by

a single utility, our baseline scenario considers only PSU-states that have 90 percent of its

customers serviced by a single utility.

To mitigate concerns that utility-level average quantity measures are being driven by

areas outside the PSU-state that are still covered by the utility in question, we further refine

our baseline scenario to consider only PSU-states whose primary electricity service provider

has at least 50 percent of its customers inside the PSU-state.12 The list of PSU-states

combinations that meet this requirement is given in Table 2 and a plot of the utility-level

average prices and average quantities associated with those PSU-states is given in Figure

2.13 From Figure 2, we see that for each PSU-state there is observable variation across time

11For more detailed information on how the data is collected, see Johnson-Herring et al. (2002)

12The percent of customers serviced by the utility in question that live in the specific PSU-state is proxied

by population data. More specifically, based on census track data, we calculate the total population living

in the utilitys service territory and then calculate what percent of that population is in the geographic

union of the utility service territory and PSU-state.

13It should also be noted that we applied many different screening criterion to form our data set, some of
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in average prices and quantities and also considerable price and quantity variation across

the PSU-states used in our baseline estimation.

To estimate the average price equation, our empirical method necessitates instrumental

variables for electricity price. These variables should shift price schedules, but not affect

consumption directly. Although local distribution companies, the entities that typically sell

electricity to households, have largely regulated price schedules, these schedules often allow

for built-in adjustments based on fluctuations in electricity generation costs, especially fuel

costs. In addition, utilities often obtain power supply through procurements in advance to

meet a larger share of their service obligations. We therefore use, as cost shifters, lagged

prices of natural gas and coal (quarterly and yearly moving averages), as well as states’

electricity generation profiles and the interaction between generation profiles and fuel prices.

Coal price data comes from two different sources, both generated by the EIA. For PSU-

state combinations associated with states where electricity is generated and distributed by

regulated utilities (i.e., cost-of-service regions), coal prices are monthly quantity-weighted

average prices derived from EIA forms 423 and 923.14 Since these forms generally exclude

data from independent power producers, we use national average monthly coal prices from

EIA’s Electric Power Monthly reports, for observations in regions with competitive whole-

sale electricity pricing. Natural gas prices were derived from the monthly state average

residential natural gas prices given in EIA’s Natural Gas Monthly reports.15 Monthly elec-

tricity generation shares by fuel type for each state associated with PSU-state combinations

we use in the study are derived from the EIA’s Electric Power Monthly reports. A summary

which are included in our robustness checks, and our estimation results appeared robust to these variations.

14The EIA 423 form was merged into schedule 2 of the EIA 923 in 2008, so we use both forms. These

forms give fuel costs at the generation-plant level from which a quantity-weighted $/MBtu coal price can

be derived.

15The EIAs Natural Gas Monthly reports also give monthly state average natural gas prices for gas

delivered to electric generators. However, due to confidentiality restrictions, the prices for some states

withheld. Since the natural gas prices of residential consumers and electric generators are highly correlated

and no prices are withheld in the monthly state average natural gas prices for residential consumers, we

use the residential gas price series.

12



of the cost shifters is given in Table 3 and plots of selected variables are given in Figure

3. From the plots we see that over the time span analyzed there is considerable variation

in lagged natural gas and coal prices. We also observe an increase in generation shares

of natural gas. The increase is primarily attributed to the large increase in natural gas

generation in PSU-states A424-CA (San Diego, CA region) and A109-NY (New York, NY

region).

4 Monte Carlo Analysis

Before showing the estimation results, we present a Monte Carlo analysis to illustrate the

effectiveness of the empirical strategy. The Monte Carlo analysis is based on the six PSU-

state combinations that clear the screening criteria described above: San Francisco, CA;

San Diego, CA; Baltimore, MD; New York, NY; Chicago, IL; Philadelphia, PA. We first

generate price and quantity data for each household using the demand and price equations

(4) and (5). The input for data generation includes a vector of household characteristics

from CEX, cost shifters, and a given set of parameters for the two equations. The household

characteristics, a subset of those listed in Table 2, include household income, number of

rooms in the house, household size, HDD interacted with an electric heat dummy, and

CDD interacted with an air conditioning dummy. The cost shifters, a subset of those listed

in Table 3, include the shares of electricity generated during the past three months using

natural gas, coal, and nuclear plus hydro.

Based on these variables and parameters, we generate monthly expenditure data at

the household level and monthly state average electricity prices and quantities. We then

use both OLS and the GMM approach discussed above to recover the parameters used to

generate the data. The OLS approach uses equation (3), where state average electricity

prices are used in place of household average prices and quantities are imputed using

monthly expenditure divided by state average prices.

Table 4 reports the values of the parameters used to generate the data (the true pa-

rameters) and their estimates from OLS and GMM for six different cases. The parameter

estimates are based on 100 runs in each case. We conduct analysis for demand with dif-
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ferent elasticities: -0.3 reported in the first three panels and -1.2 in the last three panels.

Three scenarios of price schedules are considered: upward sloping in all PSU-state com-

binations, downward sloping, and mixed slope across PSU-state combinations. In all six

cases, the GMM method is able to recover the true parameters precisely in the demand

equation while the OLS method gives biased estimates, especially for log(price), the key

variable of interest. The bias is especially large for the demand specification with the price

elasticity of -0.3 in panels 1-3. We do not report the results for the dummies variables (six

state dummies, two year dummies, and 11 month dummies) in the demand equation or

the parameters in the price equation to save space. But all of them are recovered quite

precisely from GMM as well.

5 Estimation Results

In this section, we first present results from the baseline estimation. We then present results

for robustness checks. The term baseline refers not to the method of estimation, but to

the set of variables and observations included in the model. The baseline and alternative

estimations are carried out using the GMM procedure described above and by OLS.

5.1 Baseline Estimation

The use of a linear function to approximate a nonlinear average price function may not

work well at low or high values of consumption in the case of tiered pricing. Thus, in the

baseline estimation, we drop observations in the upper and lower 2.5 percentile of electric-

ity expenditure to avoid the effects of outliers (e.g., college dorms, those with subsidized

electricity), possible data entry errors, as well as households with a large proportion of

electricity being generated by themselves (e.g., through solar panels). For example, the

maximum monthly electricity expenditure in the data is $2,946 from a household with an

annual income is $157,720. Assuming constant monthly income implies the highly unlikely

possibility that over 22 percent of monthly income was spent on electricity. In the other

extreme, there are 31 observations with monthly expenditure of $10. Among these ob-

servations, the household income ranges from $4,071 to $440,910 with a mean of $61,229.

We suspect if not data entry error, some of the observations may come from households
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that have used self-generated electricity or subsidized electricity through some low income

assistance program.

We also drop PSU-states with fewer than 1,000 observations from the sample to ensure

a reasonably large number of observations in each state in each month, which is particularly

important for the consistency of the second set of moment conditions. Finally, we drop

households with incomes less than $10,000 to further avoid possibilities of low-income utility

assistance. We perform robustness checks with respect to data censoring and the results

are provided below.

Table 5 presents parameter estimates from OLS and GMM. Both estimations include

PSU-state dummies, year dummies, and month dummies, but the parameters associated

with these variables were omitted for brevity. Due to the log-log specification used, the

parameter on log(price) in the first row provides price elasticity estimates. There exists

a substantial difference in price elasticity estimates from the two methods: -0.101 from

OLS and -0.982 from GMM. As discussed above, the OLS estimates could suffer bias due

to both simultaneity and measurement error issues and the direction of bias is unknown a

priori. In addition, the coefficient estimates on most of the other variables also exhibit large

differences from OLS and GMM. This highlights that the bias in the naive OLS approach

is not limited to the price variable as illustrated by equation (3). In Section 5.3, we present

a detailed discussion of our price elasticity estimates in comparison with the literature.

The income elasticity estimate is about 0.11 from our GMM estimation. This estimate

is well within the range of income elasticity estimates from other studies. For example,

Herriges and King (1994) and Barnes et al. (1981) find income elasticity estimates of 0.45

and 0.20, repectively, while Dubin and McFadden (1984) get an estimate of 0.02 and Reiss

and White (2005) find no statistically significant income effect.

The remaining parameter estimates in Table 5 correspond to housing characteristics,

demographic information, and appliance holding variables. The characteristics of the hous-

ing unit we control for include a variable for house size (# of rooms), variables on housing

unit age, a dummy if the housing unit is owned (Owned House), and a dummy if the unit is

a single-family dwelling (Single House). As expected, we find that electricity consumption
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increases with the number of rooms and household size. Interpreting the remaining housing

characteristics is not as straight forward since they appear in interaction terms.

With respect to the house age characteristics, we control for the age of the house (House

Age), a dummy equaling one if the house was built before 1970 (D70), and the interaction

between these two variables (D70*House Age). The positive parameter estimates on house

age imply that electricity usage increases with household age for those built after 1970.16

The interaction between D70 and house age allows the age effect on electricity usage to

be different for houses built before 1970 from those built after. The interaction between

D70 and House Age allows the age effect on electricity usage to be different for houses built

before 1970 from those built after, which is useful if much older houses have been renovated.

Nevertheless, we fail to find a different age effect for pre-1970 houses than for post-1970

houses.17

With respect to appliance holdings, we find all the parameter estimates for appliance-

holding have statistically significant values and intuitive signs except for on electric cooking.

For instance our demand estimation shows that electricity demand increases when house-

hold have electric heating, ACs (window units or central AC), swimming pool, and dryer.

All the interaction terms between appliance and weather variables (CDD and HDD) have

positive signs, as intuition would suggest. For the house ownership dummy variable, we

find a negative, but statistically insignificant effect of home ownership on electricity con-

sumption. One would expect that home owners would be more likely to purchase an energy

efficient capital stock, since they will accrue the benefits from such stock over a longer pe-

riod, leading to conditionally lower electricity consumption than renters. Indeed, in a recent

study using RECS data, Davis (2010) finds renters are more likely to have fewer Energy

Star appliances than home owners. However, the ownership of energy efficient appliances

16We use 1970 as a somewhat arbitrary cut-off point between older construction and newer construc-

tion. We also tried cut-off years above and below 1970 and these do not substantially change our results.

Additionally, if this was a totally arbitrary and meaningless cut-off, we would expect to find a statistically

insignificant parameter estimate on D70.

17Chong (2011) finds that new houses (post-1970) have higher temperature responses than old houses

using data from southern California.
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may be counteracted by more time spent in the housing unit and/or a greater frequency of

appliance usage by house owners, thus obscuring the significance of the ownership effect.

Although our paper is focused on electricity demand, the identification relies on us-

ing cost shifters as instruments, a common strategy in demand estimation. The baseline

model uses ten instruments: quarterly and yearly lagged moving average share of electricity

generation from coal, the share from natural gas, the share from hydro plus nuclear, the

interaction between the share from coal with lagged coal price, and the interaction between

the share from natural gas and lagged natural gas price. The estimation results show that

most of the cost shifters are statistically significant. The yearly moving average variables

generally have larger effect than those the quarterly variables, indicating that electricity

prices are often affected by supply conditions even one year prior to production. We con-

duct robustness checks on the use of instruments in the following section, together with

other sensitivity analysis.

5.2 Robustness Checks

Table 6 shows parameter estimates from GMM for three robustness checks. The first

one (Robustness #1) is based on one more PSU-state pair than was used in the baseline

specification. Recall, in the six PSU-states analyzed in the baseline specification, at least

90% of the residents of in the area are served by the same utility and at least 50% of all

customers of the utility are from the PSU-state. In the first robustness check, we remove

the second restriction. As a result, Miami, Florida with about 1,600 observations is added

to the analysis. The estimate of price elasticity from this specification is -0.975, compared

to -0.982 in the baseline specification. Coefficient estimates on household demographics

and appliances, except those interacted with weather variables, are very similar between

the two specifications as well.

To remove outliers and to obtain better approximation of the average price schedule

using a linear function, the baseline specification drops households in the top and bottom

2.5 percent of the electricity expenditure distribution. The second robustness check (Ro-

bustness #2) examines the sensitivity of our results to this censoring, in which we drop

observations in the top and bottom 10 percent of electricity expenditure. The price elas-
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ticity estimate is still very close to that from the baseline specification. Nevertheless, the

income elasticity drops from 0.11 to 0.04, suggesting a large effect from the censoring on

the estimate of income elasticity. This could be due to the measurement error introduced

by censoring in the second moment condition, where average price and quantity among all

residential customers at the utility level are used. Another analysis dropping observations

in the top and bottom one percent of electricity expenditure, not shown in the table, yields

very similar price elasticity estimate as well.

All previous specifications use ten cost shifters as instruments for electricity price to

form moment conditions. The third robustness check (Robustness #3) reported in table

6 uses five of the ten lagged cost shifters employed in the baseline model. They are the

average share by generation type (coal, natural gas, nuclear and hydro) during the past

12 months, the interaction between the average coal price during the past 12 months and

the coal share of generation, and the interaction between natural gas price and the natural

gas share of generation. The other five variables not used in this specification are those

measured based on quarterly averages. Most of the estimates are very similar to those from

the baseline specification. The estimate of price elasticity is -0.942 versus -0.982. All the

other coefficient estimates are very similar between the two specifications too.

We conduct several additional robustness checks and all of them yield similar results to

those from the baseline estimation. These results are not reported here but are available

upon request. One of the robustness checks drops San Francisco in the analysis because

its primary utility company PG&E also serves substantial parts of inland California. Since

inland California has considerably different climate than coastal San Francisco, as well as

significant socio-demographic differences, the average consumption of customers served by

PG&E in total may not match up well with the average consumption of customers in San

Francisco. Another analysis relaxes baseline model restrictions that require a single utility

to cover 90% of the PSU-State and have 50% or more of its customers reside in the PSU-

state. For this analysis we retain other criterion in the baseline estimation. The resulting

data set has 50,067 observations across 21 unique PSU-states. In an earlier version, we

conduct the same analysis for four census regions where we use state-level average price
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and quantities to construct the second moment conditions. The results are reported at our

Resources for the Future (RFF) working paper.

5.3 Discussion on Price Elasticity Estimates

Our near unitary price elasticity estimate, though quite robust, is among the larger esti-

mates in the literature, thus a discussion of possible reasons for this result is warranted.

Most of other studies that use household-level data, matched with actual rate schedules

faced by households, provide significantly less price-elastic demand estimates . For exam-

ple, using data in 23 large U.S. metropolitan areas from 1972-1973 CEX, Barnes et al.

(1981) obtain an estimate of price elasticity of -0.55. Dubin and McFadden (1984) use

a 1975 household survey and estimate a price elasticity of -0.26. Based on data from a

controlled experiment in Wisconsin during 1984 to 1985, where participants were subject

to five different rate schedules, Herriges and King (1994) obtain a price elasticity of -0.02

for the summer season and -0.04 for the winter. Reiss and White (2005) use the Califor-

nia subsample of the 1993 and 1997 survey waves of RECS and obtain an average price

elasticity of -0.39 across households.18

The major difference between our study and the studies discussed directly above is

that those studies assume that households respond to marginal prices while we assume

households respond to average prices. As illustrated in the next section, this difference can

lead to drastically different price elasticity estimates. The question of which price consumers

respond to in electricity demand is beyond the scope of this study, but as previously

mentioned, there is increasing evidence that consumers respond to average prices and that

result stands to reason. Nevertheless, the importance of this question is underscored by the

significant difference between our results and those from studies assuming marginal price

responsiveness. In addition, three of the four studies discussed above are based on data from

18It should be noted that Reiss and White (2005) use an end-use demand estimation model. Thus

a household’s price elasticity is dependent on its appliance holdings. Correspondingly, Reiss and White

(2005) obtain estimations on a range of price elasticities across heterogeneous households. The mean of

these price elasticity estimates is -0.39, but a histogram of their estimates show a non-neglible portion of

households with price elasticities of -1 or less.
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specific geographic locations, while our sample looks at data across several geographically

diverse metropolitan areas. These geographic differences in samples may also attribute to

the large differences in price elasticity estimates.

The geographic and temporal differences could also attribute to the differences between

our estimates and those in Borenstein (2009) and Ito (2011), both of which use very rich

household billing data, but also allow households to respond to average price as well as

marginal prices. Borenstein (2009) focus on March to May, generally low demand months,

from 2000 to 2006 among households served by Southern California Edison which covers

a large part of Southern California. The elasticity estimates with respect to average price

range from 0 to -0.96 when the estimation does not constrain the elasticity to be the same

across months. When it does, the estimates range from -0.18 to -0.41 across three time

periods (2000-2002, 2002-2004, and 2004-2006). In addition, the elasticity estimates with

respect to marginal price (-0.04 to -0.09) are much smaller in magnitude than those with

respect to average price. The study area in Ito (2011) is the territory border of the two

utilities and is a small portion of the Orange county, CA with 54,280 customers. The elas-

ticity estimates with respect to average price are about -0.10 to -0.14 across specifications,

still larger in magnitude than those with respect to marginal price. It is worth mentioning

the elasticity estimates with respect to marginal price in both studies are much smaller

than -0.39 from Reiss and White (2005) which covers the whole California, lending support

to the idea that regional differences may apply even within California.

5.4 Price Elasticities: Average vs. Marginal Price Response

The price elasticities of demand presented here are considerably more elastic than several

other recent studies using household level data. While there could be other factors that

contribute to the differences in price elasticity estimates across studies (see Dahl 1994),

assuming that consumers respond to average prices, as done here, rather than to marginal

prices, as is commonly done in the literature, can lead to significant differences in estimates.

To further explore this point, we provide a numerical illustration below.

As discussed above, utilities frequently use non-linear price schedules in selling electric-

ity. The non-linearity could be due to an up-front fixed charge, such as a transmission
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charge, and/or block pricing. The maintained assumption used in most of the literature

of electricity demand since Taylor (1975) is that consumers are perfectly informed about

the price schedule and are able to perfectly optimize on the margin at every moment: con-

suming the amount where the marginal value of electricity is equal to the marginal price.

Although this assumption is theoretically appealing, this could be a rather strong assump-

tion and indeed there is increasing evidence that consumers are more likely to respond to

average prices rather than marginal prices. The assumption that consumers are marginal

price responders in empirical studies if they actually respond to average price could have

important implications for price elasticity estimates. In the case of block pricing, a change

in average price would imply a larger change in marginal price. Therefore, one would expect

demand curves estimated based on average price responsiveness to be more price elastic

than those based on marginal price responsiveness.

To illustrate the potential for differences in price elasticity estimates based on the two

different assumptions, consider the following example presented graphically in Figure 2. To

understand how the price elasticity is identified, assume that the market consists of three

households, A, B, and C, where A and B are on the lower tier of the price schedule and

C is on the higher tier. Assume quantity demanded, Qi, is linear and fully determined

by income, Xi, and price, Pi, such that Qi = αXi − βPi, i = (A, B, C). Pi is the price

that consumers respond to and it could either be the marginal price or the average price.

For concreteness, suppose we observe that (QA=3, XA=15), (QB=4, XB=20), (QC=6,

XC=40). We assume that there is no fixed charge. Since A and B pay the same marginal

price, they also pay an identical average price, say P1 = 0.10. Household C pays a marginal

price on the higher portion of the two-part marginal pricing schedule, and it is assumed to

be P2 = 0.15.

We now show how to identify demand parameters under the assumption that consumers

respond to marginal prices in their electricity usage decisions. Given that households A

and B face the same price, the parameter α can be identified by dividing the difference in

quantity consumed between households A and B by the difference in X. In this example, α=

(4-3)/(20-15) = 0.2. The effect of a change in marginal price on demand can be determined
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by adjusting C’s income level to that of B. Given α = 0.2, if B and C paid the same price for

electricity, then C would consume 4 more units than B. Thus the hypothetical household,

B’, with the same income level as B, but facing the same marginal price as C, P2= 0.15,

would consume four fewer units than C, resulting in 2 units of electricity consumption.

Connecting points X, corresponding to P2 = 0.15 and = 2, and Z, corresponding to P1 =

0.10 and QB = 4, where both have the same income but different marginal prices, we obtain

the demand curve for the case where consumers respond to marginal prices. The slope of

the demand curve, DMP , is β = (4-2)/(0.1-0.15) = -40. This implies a price elasticity,

evaluated at QB, for the marginal-price demand curve of εMP = P1β/QB = -1. This way

of identifying the price elasticity underlies the identification strategy used by Reiss and

White (2005) where consumers are assumed to respond to marginal prices.

To identify the demand curve for the case where consumers respond to average prices,

note that if the cutoff quantity Q∗ = 4.5, average prices paid by the three households are

P̄A = P̄B =0.10 and P̄C = 0.1125. Using the same identification strategy as described

above, α would again be 0.2 and hypothetical household, B’ , facing the same average

price of household C, 0.1125, would consume two units of electricity (four units less than

C). Connecting points Y (corresponding to P2 = 0.1125 and QB’ = 2) and Z, where both

have the same income but different average prices, we obtain the demand curve under the

assumption of average-price response, DAP . This results in a much flatter demand slope of

β = -160 and price elasticity at QB of εAP = -4.

This simple illustration shows that, for the same observations, estimating the demand

function under the assumption of average-price responsiveness will result in much more

elastic demand than that estimated under the assumption of marginal-price responsive-

ness.19 The degree to which the price elasticities will differ is, of course, a function of the

data used. Since we do not have individual rate structures for all individuals in our sam-

ple, we are not able to estimate the corresponding demand curves under the assumption of

marginal price responsiveness. However, using rate structure data for households served by

19A similar example, using a decreasing block price schedule would yield the same result with respect to

price elasticities as the example described above.
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Southern California Edison, Borenstein (2009) is able to estimate elasticities with respect

to both marginal prices and average prices. He finds the demand function specified over

average prices results in an elasticity estimate at least double (in magnitude) that from the

demand function specified over marginal prices.

More generally, the discussion in this section and the comparisons with previous studies

in the previous section highlight that further research is warranted to understand the prices

to which consumers really respond in electricity demand and to reconcile differences from

these studies.

6 Policy Analysis Simulations

As discussed above, our price elasticity estimates are considerably larger than those based

on the assumption of marginal price responsiveness. The question, however, remains as

to how these different estimates will alter analysis of federal policies that affect electricity

prices. To examine this issue, we use simulations to study a federal CO2 emissions regu-

lation similar to that proposed in H.R. 2454 (U.S. Congress 2009), the Waxman-Markey

climate bill.

The simulations are conducted using RFF’s Haiku electricity market model.20 Haiku is

a deterministic and highly parameterized simulation model of the electricity sector in the

forty-eight contiguous U.S. states. It calculates information similar to that of the Electricity

Market Module of the National Energy Modeling System that is maintained and used by

the EIA. This analysis hinges on the demand side of the Haiku model that employs a partial

adjustment specification of electricity demand.

We conduct the simulations under three different residential price elasticity of demand

parameterizations. In the first parameterization, we use the rather low short-run price

elasticity estimates from Paul et al. (2009b) that vary by region and season, with a national

average of -0.13. We denote this the εL case to signify the low elasticity estimates.

The model used in Paul et al. (2009b) is based on state-aggregated data and includes

both short-run and long-run elasticity estimates. In the second parameterization, we use a

20Complete model documentation is available in Paul et al. (2009a).
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more moderate estimate of -0.4, the εM case. This value is in line with the price elasticity

estimated in Reiss and White (2005), which is based on marginal price responsiveness from

household-level data in California. Nevertheless, we apply this elasticity to all regions

covered under the simulation. In our final parameterization, we use the price elasticity

estimate from our baseline estimation as the short-run elasticity in the policy simulation.

We denote this as the εH to signify our higher elasticity estimates. All other features of the

model, such as long-run price elasticities, other residential demand covariates, and all of the

coefficients for the industrial and commercial sector demand functions are those estimated

in Paul et al. (2009b).

The simulation outputs give us average residential electricity prices and consumption

and CO2 emissions allowance prices. The model is run over the 2010 to 2035 horizon,

with the CO2 emissions policy beginning in 2012 and holding cumulative economy-wide

CO2 emissions constant across scenarios.21 Table 7 shows policy simulation results for four

different years (2012, 2016, 2025, and 2035) for each of the parameterization cases. We

also show percent changes relative to the Annual Energy Outlook 2010 reference case (U.S.

EIA 2010).

The simulation results show that the policy tends to increase electricity prices relative

to the reference case and that the price impact tends to grow over time. The details of

why this pattern emerges are not important for this analysis, but it hinges on a leftward

shift of the electricity supply curves, and we are interested in how the assumption about

short-run price elasticities impact consumption, electricity prices, and allowance prices

under this supply-side shift. The simulations show that, especially in the long run, federal

climate policy will engender a significantly greater reduction in electricity consumption if

consumers are more price elastic. This may have important negative welfare consequences

for households, though it will be partly offset by a corresponding reduction in allowance

prices. By 2035, the allowance price under the εH scenario is four percent lower than under

21Haiku includes a marginal abatement cost curve that allows for allowance price to respond to emissions

from the rest of economy. There are also supply curves for domestic and international carbon offsets that

are constrained according to the offsets specification of H.R. 2454.
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the εL scenario. This would have a positive welfare impact on households because under

an economy-wide emissions cap, all goods and services that have any carbon intensity of

production will become more expansive as allowance prices rise.

Another factor that mitigates the household welfare impacts of consumption reductions

is the electricity price. Table 7 shows an approximate $3/MWh difference in electricity

prices from the εL case to the εH that holds fairly constant throughout the time span ex-

amined. The price difference may seem surprisingly low given the rather large differences

in electricity consumption from εL to εH , however the demand parameters of the other

customer classes (commercial and industrial) are held constant across these scenarios and

these residential consumption reductions represent only about one-third of total electric-

ity demand. Furthermore, the electricity price reductions that emerge under the higher

elasticity scenarios result in an increase in consumption by the other customer classes.

These factors, along with the observation that the long-run supply curves for electricity

production in Haiku are relatively elastic, yield relatively smalls changes in electricity price.

7 Conclusion

In this paper, we develop an empirical method to estimate residential electricity demand

under the assumption that consumers respond to average prices rather than marginal prices.

The method circumvents the need for proprietary individual billing data and instead can be

carried out using publicly available data, yet without relying on imputed electricity prices

or quantities. We apply the estimation strategy to household-level data from CEX, which

includes monthly household electricity expenditures, but not electricity prices or quantities,

over the period 2006 - 2008.

We consistently find a price elasticity of electricity demand near -1 across many differ-

ent specifications. The estimate is at the upper end (in magnitude) among the large set

of price elasticity estimates in the the literature, ranging from zero to less than -1. As

we show through an numerical illustration, it is not unreasonable for our estimates to be

larger than those derived in studies that assume households respond to marginal electricity

prices since we explicitly assume that households respond to average electricity prices. As
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noted above, there are several studies that present some empirical evidence, albeit confined

to specific geographic regions, to support the notion that average-price responsiveness is

a more appropriate assumption than marginal-price responsiveness. In addition, the dif-

ferences in time span and geographic area could be other factors that contribute to the

difference, especially from estimates in Borenstein (2009) and Ito (2011). Further research

is warranted to understand variations in price elasticities across regions and over time and

to reconcile differences across studies.

To put these elasticity estimates into a policy-relevant context, we conduct a policy

study using a model parameterization based on the estimates derived here, to simulate

the recently proposed U.S. Climate policy legislation H.R. 2454 (Waxman-Markey). The

outcomes from this study, in terms of electricity prices, consumption, and emissions al-

lowance prices, are then compared to outcomes using more conservative estimates of price

elasticity from studies assuming marginal-price responsiveness. Not surprisingly, we find

that simulations using our elasticity estimates leads to a greater reduction in electricity

consumption due to the implementation of the policy and lower emission allowance prices.

Though we believe this study provides a new approach to estimate electricity demand

without specific rate structure data, there are several issues left unexplored by this research.

First, because we do not have specific bill information, we cannot validate the assumption

of average price-responsiveness. This is clearly an important consideration that goes far

beyond the current study. In addition, due to the short time frame examined, we do

not account for capital adjustment by households. Estimating capital adjustment price

responses, and how these responses vary across income groups, would be very valuable in

determining the expected outcomes of national energy policies aimed at improving energy

efficiency. However, such estimates would require more detailed data than what is available

in the CEX.
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Table 1: Summary Statistics of Demand Side Variables by Specification

Variables Description Mean S.D.

Expenditure Monthly expenditure in $ 104.79 70.16

Avg. Price Average price in $/MWh 14.17 3.84

Quantity Imputed quantity in 100 kwh 6.63 1.98

Income Income in $10,000 8.46 6.56

# of Rooms Number of rooms in housing unit 6.37 2.12

Household Size Number of residents in housing unit 2.73 1.51

House Age Age of housing unit in years 45.90 31.92

D70 Equal 1 if unit built before 1970 0.51 0.50

Resp. Age Survey respondent age 50.61 15.69

Elec. Heat Equal 1 if unit has elec. heat 0.13 0.34

Central AC Equal 1 if unit has central AC 0.54 0.50

Window AC Equal 1 if unit has window AC 0.20 0.40

Swim Pool Equal 1 if unit has swim pool 0.10 0.30

Elec. Cook Equal 1 if unit has elec. stove 0.33 0.47

Dryer Equal 1 if unit has clothes dryer 0.83 0.40

CDD Monthly Cooling Degree Days in 100s 0.75 1.21

HDD Monthly Heating Degree Days in 100s 3.56 3.54

Own House Equal 1 if housing unit is owned 0.79 0.41

Single House Equal 1 if housing unit is unattached 0.62 0.49

Notes: Summary statistics based on data used in the baseline estimation.

Average price and quantity are based on utility-level data from EIA, rather

than derived via estimation.
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Table 2: List of PSU-states
PSU-State General Urban Areas Covered

A422-CA* San Fran.-Oakland-San Jose, CA

A424-CA* San Diego, CA

A320-FL Miami, FL

A207-IL* Chicago, IL

A313-MD* Baltimore, MD

A109-NY* New York, NY

A102-PA* Philadelphia, PA

Notes: “*”-denotes included in baseline estima-

tion and robustness checks 2 and 3. Robustness

check 1 covers all PSU-states listed.

Table 3: Summary Statistics of Cost Shifters by Census Region

Baseline

Variables Description Mean S.D.

% Nat. Gas1 % nat. gas gen. over prev. 3 months 0.21 0.20

% Coal 1 % coal gen. over prev. 3 months 0.33 0.27

%(Nuke+Hydro) 1 % (nucl.+hydro) gen. over prev. 3 months 0.41 0.07

% Nat. Gas2 % nat. gas gen. over prev. 12 months 0.20 0.19

% Coal2 % coal gen. over prev. 12 months 0.33 0.27

% (Nuke+Hydro)2 % (nucl.+hydro) gen. over prev. 12 mo. 0.41 0.06

PNG
1 Avg. nat. gas price over prev. 3 months 14.64 3.45

PC
1 Avg. coal price over prev. 3 months 1.76 0.18

PNG
2 Avg. nat. gas price over prev. 12 months. 14.25 2.45

PC
2 Avg. coal price over prev. 12 months 1.69 0.15

Notes: Summary statistics based on data used in the baseline estimation. The

abbreviations “gen.” and “prev.” stand for “generation” and “previous”, re-

spectively. Prices are in $/MBtu for coal and $/thousand feet for natural gas.
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Table 4: Monte Carlo Results for Demand Equation

True OLS Results GMM Results

Value Est. S.E. Est. S.E.

Panel 1: Upward sloping price schedule(price elas.: -0.3)

Log(price) -0.3 -0.501 0.056 -0.338 0.058

Log(income) 0.2 0.232 0.003 0.202 0.005

Log(room number) 0.4 0.471 0.009 0.404 0.012

Log(household size) 0.3 0.360 0.005 0.303 0.008

Electric heat * HDD 0.1 0.119 0.002 0.101 0.003

Central AC * CDD 0.2 0.230 0.003 0.202 0.005

Panel 2: Downward sloping price schedule(price elas.: -0.3)

Log(price) -0.3 -0.658 0.0325 -0.341 0.050

Log(income) 0.2 0.1471 0.0028 0.197 0.007

Log(room number) 0.4 0.3129 0.007 0.396 0.016

Log(household size) 0.3 0.2365 0.0041 0.295 0.010

Electric heat * HDD 0.1 0.0812 0.0013 0.099 0.004

Central AC * CDD 0.2 0.1502 0.0027 0.196 0.006

Panel 3: Mixed sloping across PSUs(price elas.: -0.3)

Log(price) -0.3 -0.464 0.032 -0.307 0.028

Log(income) 0.2 0.197 0.003 0.2 0.005

Log(room number) 0.4 0.418 0.008 0.4 0.012

Log(household size) 0.3 0.31 0.005 0.3 0.008

Electric heat * HDD 0.1 0.098 0.002 0.1 0.003

Central AC * CDD 0.2 0.184 0.003 0.199 0.005

==> Continued on Next Page
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True OLS Results GMM Results

Value Est. S.E. Est. S.E.

Panel 4: Upward sloping price schedule(price elas.: -1.2)

Log(price) -1.2 -1.058 0.051 -1.187 0.070

Log(income) 0.2 0.191 0.003 0.200 0.004

Log(room number) 0.4 0.387 0.006 0.399 0.009

Log(household size) 0.3 0.289 0.004 0.299 0.006

Electric heat * HDD 0.1 0.097 0.001 0.100 0.002

Central AC * CDD 0.2 0.192 0.002 0.199 0.004

Panel 5: Downward sloping price schedule (price elas.: -1.2)

Log(price) -1.2 -1.118 0.020 -1.190 0.043

Log(income) 0.2 0.220 0.003 0.201 0.005

Log(room number) 0.4 0.439 0.007 0.401 0.012

Log(household size) 0.3 0.330 0.004 0.301 0.009

Electric heat * HDD 0.1 0.109 0.001 0.100 0.003

Central AC * CDD 0.2 0.220 0.003 0.200 0.006

Panel 6: Mixed sloping across PSUs (price elas.: -1.2)

Log(price) -1.2 -1.145 0.019 -1.193 0.016

Log(income) 0.2 0.203 0.003 0.200 0.004

Log(room number) 0.4 0.405 0.007 0.400 0.008

Log(household size) 0.3 0.305 0.004 0.300 0.005

Electric heat * HDD 0.1 0.103 0.001 0.100 0.002

Central AC * CDD 0.2 0.209 0.003 0.200 0.004

Notes: Monte Carlo simulations are based on observations

from six PSU-states from 2006-2008. Parameters are esti-

mated using both OLS and GMM with 100 runs. Equations

include six PSU dummies, two year dummies and 11 month

dummies. Other model parameters, not shown here, are all

recovered precisely from GMM.
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Table 5: Demand Equation Estimates: the Baseline Model

OLS GMM

Para. S.E. Para. S.E.

Log(price) -0.101 0.006 -0.982 0.020

Log(Income) 0.000 0.001 0.108 0.007

Log(#of rooms) 0.000 0.002 0.479 0.020

Log(household size) 0.001 0.001 0.202 0.009

Log(house age) 0.000 0.001 0.013 0.007

D70*Log(house age) 0.001 0.003 0.000 0.018

D70 -0.002 0.005 -0.038 0.031

Log(respondent age) 0.001 0.002 0.133 0.014

Electric Heat -0.020 0.002 0.045 0.016

Central AC -0.002 0.002 0.077 0.012

Window AC -0.005 0.002 0.060 0.014

Swim Pool 0.001 0.002 0.077 0.015

Electric Cooking 0.000 0.001 -0.038 0.010

CDD 0.078 0.001 0.033 0.005

HDD 0.011 0.000 0.001 0.000

CDD*(Central AC) 0.003 0.001 -0.005 0.006

CDD*(Window AC) 0.007 0.001 0.013 0.007

HDD*(Electric Heat) 0.621 0.052 4.456 0.285

CDD*(Swim Pool) 0.003 0.180 0.828 0.713

Owned House 0.000 0.002 -0.004 0.013

Single House 0.001 0.001 0.076 0.011

Dryer 0.002 0.002 0.146 0.013

Notes: The number of observations is 16,102 from six PSU-

states. The price variable used in OLS is the monthly util-

ity average from EIA. The quantity is the average for the

households in the utility service territory. The regression

also includes PSU-state dummies, year dummies and month

dummies.
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Table 6: Demand Equation Estimates: Robustness Checks

Robustness 1 Robustness 2 Robustness 3

Para. S.E. Para. S.E. Para. S.E.

Log(price) -0.976 0.008 -0.970 0.019 -0.942 0.017

Log(Income) 0.091 0.006 0.038 0.006 0.112 0.007

Log(#of rooms) 0.409 0.018 0.341 0.023 0.501 0.020

Log(household size) 0.234 0.009 0.142 0.010 0.210 0.009

Log(house age) 0.006 0.006 -0.001 0.007 0.020 0.007

D70*Log(house age) 0.008 0.017 0.007 0.017 -0.008 0.019

D70 -0.019 0.031 -0.050 0.030 -0.031 0.033

Log(respondent age) 0.135 0.013 0.044 0.013 0.143 0.015

Electric Heat 0.161 0.012 -0.075 0.015 0.043 0.017

Central AC 0.133 0.013 0.046 0.011 0.102 0.013

Window AC 0.030 0.015 0.078 0.013 0.057 0.015

Swim Pool -0.092 0.014 0.047 0.012 0.062 0.016

Electric Cooking -0.008 0.010 -0.017 0.009 -0.035 0.011

CDD 0.039 0.004 0.015 0.005 0.051 0.006

HDD 0.000 0.000 0.002 0.000 0.001 0.000

CDD*(Central AC) -0.041 0.004 0.026 0.005 -0.025 0.006

CDD*(Window AC) -0.010 0.006 0.019 0.006 0.023 0.007

HDD*(Electric Heat) 0.567 0.060 4.869 0.313 4.429 0.287

CDD*(Swim Pool) 7.682 0.422 -1.434 0.671 0.527 0.785

Owned House 0.052 0.012 0.003 0.012 -0.023 0.014

Single House 0.081 0.010 0.051 0.010 0.097 0.012

Dryer 0.154 0.012 0.126 0.013 0.162 0.014

No. of Observations 17,759 13,649 16,102

Notes: Estimates are from GMM. All regressions include PSU-state dum-

mies, year dummies and month dummies.
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